Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemr GIF version

Theorem apdifflemr 16158
Description: Lemma for apdiff 16159. (Contributed by Jim Kingdon, 19-May-2024.)
Hypotheses
Ref Expression
apdifflemr.a (𝜑𝐴 ∈ ℝ)
apdifflemr.s (𝜑𝑆 ∈ ℚ)
apdifflemr.1 (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))
apdifflemr.as ((𝜑𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))))
Assertion
Ref Expression
apdifflemr (𝜑𝐴 # 𝑆)

Proof of Theorem apdifflemr
StepHypRef Expression
1 2cnd 9139 . . . . 5 (𝜑 → 2 ∈ ℂ)
2 apdifflemr.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
32recnd 8131 . . . . 5 (𝜑𝐴 ∈ ℂ)
432timesd 9310 . . . . . 6 (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴))
5 apdifflemr.1 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))
6 1cnd 8118 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
73, 6subnegd 8420 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 − -1) = (𝐴 + 1))
83, 6, 7comraddd 8259 . . . . . . . . . . . . 13 (𝜑 → (𝐴 − -1) = (1 + 𝐴))
98fveq2d 5598 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴 − -1)) = (abs‘(1 + 𝐴)))
103, 6abssubd 11589 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴 − 1)) = (abs‘(1 − 𝐴)))
115, 9, 103brtr3d 4085 . . . . . . . . . . 11 (𝜑 → (abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴)))
126, 3addcld 8122 . . . . . . . . . . . 12 (𝜑 → (1 + 𝐴) ∈ ℂ)
136, 3subcld 8413 . . . . . . . . . . . 12 (𝜑 → (1 − 𝐴) ∈ ℂ)
14 absext 11459 . . . . . . . . . . . 12 (((1 + 𝐴) ∈ ℂ ∧ (1 − 𝐴) ∈ ℂ) → ((abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴)) → (1 + 𝐴) # (1 − 𝐴)))
1512, 13, 14syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴)) → (1 + 𝐴) # (1 − 𝐴)))
1611, 15mpd 13 . . . . . . . . . 10 (𝜑 → (1 + 𝐴) # (1 − 𝐴))
176, 3negsubd 8419 . . . . . . . . . 10 (𝜑 → (1 + -𝐴) = (1 − 𝐴))
1816, 17breqtrrd 4082 . . . . . . . . 9 (𝜑 → (1 + 𝐴) # (1 + -𝐴))
193negcld 8400 . . . . . . . . . 10 (𝜑 → -𝐴 ∈ ℂ)
20 apadd2 8712 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # -𝐴 ↔ (1 + 𝐴) # (1 + -𝐴)))
213, 19, 6, 20syl3anc 1250 . . . . . . . . 9 (𝜑 → (𝐴 # -𝐴 ↔ (1 + 𝐴) # (1 + -𝐴)))
2218, 21mpbird 167 . . . . . . . 8 (𝜑𝐴 # -𝐴)
23 apadd2 8712 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 # -𝐴 ↔ (𝐴 + 𝐴) # (𝐴 + -𝐴)))
243, 19, 3, 23syl3anc 1250 . . . . . . . 8 (𝜑 → (𝐴 # -𝐴 ↔ (𝐴 + 𝐴) # (𝐴 + -𝐴)))
2522, 24mpbid 147 . . . . . . 7 (𝜑 → (𝐴 + 𝐴) # (𝐴 + -𝐴))
263negidd 8403 . . . . . . 7 (𝜑 → (𝐴 + -𝐴) = 0)
2725, 26breqtrd 4080 . . . . . 6 (𝜑 → (𝐴 + 𝐴) # 0)
284, 27eqbrtrd 4076 . . . . 5 (𝜑 → (2 · 𝐴) # 0)
291, 3, 28mulap0bbd 8763 . . . 4 (𝜑𝐴 # 0)
3029adantr 276 . . 3 ((𝜑𝑆 = 0) → 𝐴 # 0)
31 simpr 110 . . 3 ((𝜑𝑆 = 0) → 𝑆 = 0)
3230, 31breqtrrd 4082 . 2 ((𝜑𝑆 = 0) → 𝐴 # 𝑆)
334adantr 276 . . . 4 ((𝜑𝑆 ≠ 0) → (2 · 𝐴) = (𝐴 + 𝐴))
34 apdifflemr.as . . . . . . . 8 ((𝜑𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))))
353subid1d 8402 . . . . . . . . . . 11 (𝜑 → (𝐴 − 0) = 𝐴)
3635fveq2d 5598 . . . . . . . . . 10 (𝜑 → (abs‘(𝐴 − 0)) = (abs‘𝐴))
37 2z 9430 . . . . . . . . . . . . . . 15 2 ∈ ℤ
38 zq 9777 . . . . . . . . . . . . . . 15 (2 ∈ ℤ → 2 ∈ ℚ)
3937, 38ax-mp 5 . . . . . . . . . . . . . 14 2 ∈ ℚ
4039a1i 9 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℚ)
41 apdifflemr.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℚ)
42 qmulcl 9788 . . . . . . . . . . . . 13 ((2 ∈ ℚ ∧ 𝑆 ∈ ℚ) → (2 · 𝑆) ∈ ℚ)
4340, 41, 42syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑆) ∈ ℚ)
44 qcn 9785 . . . . . . . . . . . 12 ((2 · 𝑆) ∈ ℚ → (2 · 𝑆) ∈ ℂ)
4543, 44syl 14 . . . . . . . . . . 11 (𝜑 → (2 · 𝑆) ∈ ℂ)
463, 45abssubd 11589 . . . . . . . . . 10 (𝜑 → (abs‘(𝐴 − (2 · 𝑆))) = (abs‘((2 · 𝑆) − 𝐴)))
4736, 46breq12d 4067 . . . . . . . . 9 (𝜑 → ((abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))) ↔ (abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴))))
4847adantr 276 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → ((abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))) ↔ (abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴))))
4934, 48mpbid 147 . . . . . . 7 ((𝜑𝑆 ≠ 0) → (abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴)))
503adantr 276 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝐴 ∈ ℂ)
5145, 3subcld 8413 . . . . . . . . 9 (𝜑 → ((2 · 𝑆) − 𝐴) ∈ ℂ)
5251adantr 276 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → ((2 · 𝑆) − 𝐴) ∈ ℂ)
53 absext 11459 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((2 · 𝑆) − 𝐴) ∈ ℂ) → ((abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴)) → 𝐴 # ((2 · 𝑆) − 𝐴)))
5450, 52, 53syl2anc 411 . . . . . . 7 ((𝜑𝑆 ≠ 0) → ((abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴)) → 𝐴 # ((2 · 𝑆) − 𝐴)))
5549, 54mpd 13 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝐴 # ((2 · 𝑆) − 𝐴))
56 apadd2 8712 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((2 · 𝑆) − 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 # ((2 · 𝑆) − 𝐴) ↔ (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴))))
5750, 52, 50, 56syl3anc 1250 . . . . . 6 ((𝜑𝑆 ≠ 0) → (𝐴 # ((2 · 𝑆) − 𝐴) ↔ (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴))))
5855, 57mpbid 147 . . . . 5 ((𝜑𝑆 ≠ 0) → (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴)))
5945adantr 276 . . . . . 6 ((𝜑𝑆 ≠ 0) → (2 · 𝑆) ∈ ℂ)
6050, 59pncan3d 8416 . . . . 5 ((𝜑𝑆 ≠ 0) → (𝐴 + ((2 · 𝑆) − 𝐴)) = (2 · 𝑆))
6158, 60breqtrd 4080 . . . 4 ((𝜑𝑆 ≠ 0) → (𝐴 + 𝐴) # (2 · 𝑆))
6233, 61eqbrtrd 4076 . . 3 ((𝜑𝑆 ≠ 0) → (2 · 𝐴) # (2 · 𝑆))
63 qcn 9785 . . . . . 6 (𝑆 ∈ ℚ → 𝑆 ∈ ℂ)
6441, 63syl 14 . . . . 5 (𝜑𝑆 ∈ ℂ)
6564adantr 276 . . . 4 ((𝜑𝑆 ≠ 0) → 𝑆 ∈ ℂ)
66 2cnd 9139 . . . 4 ((𝜑𝑆 ≠ 0) → 2 ∈ ℂ)
67 2ap0 9159 . . . . 5 2 # 0
6867a1i 9 . . . 4 ((𝜑𝑆 ≠ 0) → 2 # 0)
69 apmul2 8892 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑆 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (𝐴 # 𝑆 ↔ (2 · 𝐴) # (2 · 𝑆)))
7050, 65, 66, 68, 69syl112anc 1254 . . 3 ((𝜑𝑆 ≠ 0) → (𝐴 # 𝑆 ↔ (2 · 𝐴) # (2 · 𝑆)))
7162, 70mpbird 167 . 2 ((𝜑𝑆 ≠ 0) → 𝐴 # 𝑆)
72 0z 9413 . . . . . 6 0 ∈ ℤ
73 zq 9777 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
7472, 73ax-mp 5 . . . . 5 0 ∈ ℚ
75 qdceq 10419 . . . . 5 ((𝑆 ∈ ℚ ∧ 0 ∈ ℚ) → DECID 𝑆 = 0)
7641, 74, 75sylancl 413 . . . 4 (𝜑DECID 𝑆 = 0)
77 exmiddc 838 . . . 4 (DECID 𝑆 = 0 → (𝑆 = 0 ∨ ¬ 𝑆 = 0))
7876, 77syl 14 . . 3 (𝜑 → (𝑆 = 0 ∨ ¬ 𝑆 = 0))
79 df-ne 2378 . . . 4 (𝑆 ≠ 0 ↔ ¬ 𝑆 = 0)
8079orbi2i 764 . . 3 ((𝑆 = 0 ∨ 𝑆 ≠ 0) ↔ (𝑆 = 0 ∨ ¬ 𝑆 = 0))
8178, 80sylibr 134 . 2 (𝜑 → (𝑆 = 0 ∨ 𝑆 ≠ 0))
8232, 71, 81mpjaodan 800 1 (𝜑𝐴 # 𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4054  cfv 5285  (class class class)co 5962  cc 7953  cr 7954  0cc0 7955  1c1 7956   + caddc 7958   · cmul 7960  cmin 8273  -cneg 8274   # cap 8684  2c2 9117  cz 9402  cq 9770  abscabs 11393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395
This theorem is referenced by:  apdiff  16159
  Copyright terms: Public domain W3C validator