Proof of Theorem apdifflemr
| Step | Hyp | Ref
| Expression |
| 1 | | 2cnd 9063 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℂ) |
| 2 | | apdifflemr.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | recnd 8055 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 4 | 3 | 2timesd 9234 |
. . . . . 6
⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| 5 | | apdifflemr.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → (abs‘(𝐴 − -1)) #
(abs‘(𝐴 −
1))) |
| 6 | | 1cnd 8042 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℂ) |
| 7 | 3, 6 | subnegd 8344 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 − -1) = (𝐴 + 1)) |
| 8 | 3, 6, 7 | comraddd 8183 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 − -1) = (1 + 𝐴)) |
| 9 | 8 | fveq2d 5562 |
. . . . . . . . . . . 12
⊢ (𝜑 → (abs‘(𝐴 − -1)) = (abs‘(1 +
𝐴))) |
| 10 | 3, 6 | abssubd 11358 |
. . . . . . . . . . . 12
⊢ (𝜑 → (abs‘(𝐴 − 1)) = (abs‘(1
− 𝐴))) |
| 11 | 5, 9, 10 | 3brtr3d 4064 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴))) |
| 12 | 6, 3 | addcld 8046 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 + 𝐴) ∈ ℂ) |
| 13 | 6, 3 | subcld 8337 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 − 𝐴) ∈
ℂ) |
| 14 | | absext 11228 |
. . . . . . . . . . . 12
⊢ (((1 +
𝐴) ∈ ℂ ∧ (1
− 𝐴) ∈ ℂ)
→ ((abs‘(1 + 𝐴))
# (abs‘(1 − 𝐴))
→ (1 + 𝐴) # (1 −
𝐴))) |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (𝜑 → ((abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴)) → (1 + 𝐴) # (1 − 𝐴))) |
| 16 | 11, 15 | mpd 13 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + 𝐴) # (1 − 𝐴)) |
| 17 | 6, 3 | negsubd 8343 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + -𝐴) = (1 − 𝐴)) |
| 18 | 16, 17 | breqtrrd 4061 |
. . . . . . . . 9
⊢ (𝜑 → (1 + 𝐴) # (1 + -𝐴)) |
| 19 | 3 | negcld 8324 |
. . . . . . . . . 10
⊢ (𝜑 → -𝐴 ∈ ℂ) |
| 20 | | apadd2 8636 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 # -𝐴 ↔ (1 + 𝐴) # (1 + -𝐴))) |
| 21 | 3, 19, 6, 20 | syl3anc 1249 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 # -𝐴 ↔ (1 + 𝐴) # (1 + -𝐴))) |
| 22 | 18, 21 | mpbird 167 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 # -𝐴) |
| 23 | | apadd2 8636 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 # -𝐴 ↔ (𝐴 + 𝐴) # (𝐴 + -𝐴))) |
| 24 | 3, 19, 3, 23 | syl3anc 1249 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 # -𝐴 ↔ (𝐴 + 𝐴) # (𝐴 + -𝐴))) |
| 25 | 22, 24 | mpbid 147 |
. . . . . . 7
⊢ (𝜑 → (𝐴 + 𝐴) # (𝐴 + -𝐴)) |
| 26 | 3 | negidd 8327 |
. . . . . . 7
⊢ (𝜑 → (𝐴 + -𝐴) = 0) |
| 27 | 25, 26 | breqtrd 4059 |
. . . . . 6
⊢ (𝜑 → (𝐴 + 𝐴) # 0) |
| 28 | 4, 27 | eqbrtrd 4055 |
. . . . 5
⊢ (𝜑 → (2 · 𝐴) # 0) |
| 29 | 1, 3, 28 | mulap0bbd 8687 |
. . . 4
⊢ (𝜑 → 𝐴 # 0) |
| 30 | 29 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑆 = 0) → 𝐴 # 0) |
| 31 | | simpr 110 |
. . 3
⊢ ((𝜑 ∧ 𝑆 = 0) → 𝑆 = 0) |
| 32 | 30, 31 | breqtrrd 4061 |
. 2
⊢ ((𝜑 ∧ 𝑆 = 0) → 𝐴 # 𝑆) |
| 33 | 4 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (2 · 𝐴) = (𝐴 + 𝐴)) |
| 34 | | apdifflemr.as |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆)))) |
| 35 | 3 | subid1d 8326 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 − 0) = 𝐴) |
| 36 | 35 | fveq2d 5562 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘(𝐴 − 0)) = (abs‘𝐴)) |
| 37 | | 2z 9354 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℤ |
| 38 | | zq 9700 |
. . . . . . . . . . . . . . 15
⊢ (2 ∈
ℤ → 2 ∈ ℚ) |
| 39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℚ |
| 40 | 39 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℚ) |
| 41 | | apdifflemr.s |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ ℚ) |
| 42 | | qmulcl 9711 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℚ ∧ 𝑆
∈ ℚ) → (2 · 𝑆) ∈ ℚ) |
| 43 | 40, 41, 42 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 · 𝑆) ∈
ℚ) |
| 44 | | qcn 9708 |
. . . . . . . . . . . 12
⊢ ((2
· 𝑆) ∈ ℚ
→ (2 · 𝑆)
∈ ℂ) |
| 45 | 43, 44 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · 𝑆) ∈
ℂ) |
| 46 | 3, 45 | abssubd 11358 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘(𝐴 − (2 · 𝑆))) = (abs‘((2 ·
𝑆) − 𝐴))) |
| 47 | 36, 46 | breq12d 4046 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))) ↔ (abs‘𝐴) # (abs‘((2 ·
𝑆) − 𝐴)))) |
| 48 | 47 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → ((abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))) ↔ (abs‘𝐴) # (abs‘((2 ·
𝑆) − 𝐴)))) |
| 49 | 34, 48 | mpbid 147 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴))) |
| 50 | 3 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 𝐴 ∈ ℂ) |
| 51 | 45, 3 | subcld 8337 |
. . . . . . . . 9
⊢ (𝜑 → ((2 · 𝑆) − 𝐴) ∈ ℂ) |
| 52 | 51 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → ((2 · 𝑆) − 𝐴) ∈ ℂ) |
| 53 | | absext 11228 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ ((2
· 𝑆) − 𝐴) ∈ ℂ) →
((abs‘𝐴) #
(abs‘((2 · 𝑆)
− 𝐴)) → 𝐴 # ((2 · 𝑆) − 𝐴))) |
| 54 | 50, 52, 53 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → ((abs‘𝐴) # (abs‘((2 ·
𝑆) − 𝐴)) → 𝐴 # ((2 · 𝑆) − 𝐴))) |
| 55 | 49, 54 | mpd 13 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 𝐴 # ((2 · 𝑆) − 𝐴)) |
| 56 | | apadd2 8636 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ ((2
· 𝑆) − 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 # ((2 · 𝑆) − 𝐴) ↔ (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴)))) |
| 57 | 50, 52, 50, 56 | syl3anc 1249 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (𝐴 # ((2 · 𝑆) − 𝐴) ↔ (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴)))) |
| 58 | 55, 57 | mpbid 147 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴))) |
| 59 | 45 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (2 · 𝑆) ∈
ℂ) |
| 60 | 50, 59 | pncan3d 8340 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (𝐴 + ((2 · 𝑆) − 𝐴)) = (2 · 𝑆)) |
| 61 | 58, 60 | breqtrd 4059 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (𝐴 + 𝐴) # (2 · 𝑆)) |
| 62 | 33, 61 | eqbrtrd 4055 |
. . 3
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (2 · 𝐴) # (2 · 𝑆)) |
| 63 | | qcn 9708 |
. . . . . 6
⊢ (𝑆 ∈ ℚ → 𝑆 ∈
ℂ) |
| 64 | 41, 63 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 65 | 64 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 𝑆 ∈ ℂ) |
| 66 | | 2cnd 9063 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 2 ∈
ℂ) |
| 67 | | 2ap0 9083 |
. . . . 5
⊢ 2 #
0 |
| 68 | 67 | a1i 9 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 2 # 0) |
| 69 | | apmul2 8816 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑆 ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 # 0)) → (𝐴 # 𝑆 ↔ (2 · 𝐴) # (2 · 𝑆))) |
| 70 | 50, 65, 66, 68, 69 | syl112anc 1253 |
. . 3
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (𝐴 # 𝑆 ↔ (2 · 𝐴) # (2 · 𝑆))) |
| 71 | 62, 70 | mpbird 167 |
. 2
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 𝐴 # 𝑆) |
| 72 | | 0z 9337 |
. . . . . 6
⊢ 0 ∈
ℤ |
| 73 | | zq 9700 |
. . . . . 6
⊢ (0 ∈
ℤ → 0 ∈ ℚ) |
| 74 | 72, 73 | ax-mp 5 |
. . . . 5
⊢ 0 ∈
ℚ |
| 75 | | qdceq 10334 |
. . . . 5
⊢ ((𝑆 ∈ ℚ ∧ 0 ∈
ℚ) → DECID 𝑆 = 0) |
| 76 | 41, 74, 75 | sylancl 413 |
. . . 4
⊢ (𝜑 → DECID 𝑆 = 0) |
| 77 | | exmiddc 837 |
. . . 4
⊢
(DECID 𝑆 = 0 → (𝑆 = 0 ∨ ¬ 𝑆 = 0)) |
| 78 | 76, 77 | syl 14 |
. . 3
⊢ (𝜑 → (𝑆 = 0 ∨ ¬ 𝑆 = 0)) |
| 79 | | df-ne 2368 |
. . . 4
⊢ (𝑆 ≠ 0 ↔ ¬ 𝑆 = 0) |
| 80 | 79 | orbi2i 763 |
. . 3
⊢ ((𝑆 = 0 ∨ 𝑆 ≠ 0) ↔ (𝑆 = 0 ∨ ¬ 𝑆 = 0)) |
| 81 | 78, 80 | sylibr 134 |
. 2
⊢ (𝜑 → (𝑆 = 0 ∨ 𝑆 ≠ 0)) |
| 82 | 32, 71, 81 | mpjaodan 799 |
1
⊢ (𝜑 → 𝐴 # 𝑆) |