Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemr GIF version

Theorem apdifflemr 14079
Description: Lemma for apdiff 14080. (Contributed by Jim Kingdon, 19-May-2024.)
Hypotheses
Ref Expression
apdifflemr.a (𝜑𝐴 ∈ ℝ)
apdifflemr.s (𝜑𝑆 ∈ ℚ)
apdifflemr.1 (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))
apdifflemr.as ((𝜑𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))))
Assertion
Ref Expression
apdifflemr (𝜑𝐴 # 𝑆)

Proof of Theorem apdifflemr
StepHypRef Expression
1 2cnd 8951 . . . . 5 (𝜑 → 2 ∈ ℂ)
2 apdifflemr.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
32recnd 7948 . . . . 5 (𝜑𝐴 ∈ ℂ)
432timesd 9120 . . . . . 6 (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴))
5 apdifflemr.1 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))
6 1cnd 7936 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
73, 6subnegd 8237 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 − -1) = (𝐴 + 1))
83, 6, 7comraddd 8076 . . . . . . . . . . . . 13 (𝜑 → (𝐴 − -1) = (1 + 𝐴))
98fveq2d 5500 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴 − -1)) = (abs‘(1 + 𝐴)))
103, 6abssubd 11157 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴 − 1)) = (abs‘(1 − 𝐴)))
115, 9, 103brtr3d 4020 . . . . . . . . . . 11 (𝜑 → (abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴)))
126, 3addcld 7939 . . . . . . . . . . . 12 (𝜑 → (1 + 𝐴) ∈ ℂ)
136, 3subcld 8230 . . . . . . . . . . . 12 (𝜑 → (1 − 𝐴) ∈ ℂ)
14 absext 11027 . . . . . . . . . . . 12 (((1 + 𝐴) ∈ ℂ ∧ (1 − 𝐴) ∈ ℂ) → ((abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴)) → (1 + 𝐴) # (1 − 𝐴)))
1512, 13, 14syl2anc 409 . . . . . . . . . . 11 (𝜑 → ((abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴)) → (1 + 𝐴) # (1 − 𝐴)))
1611, 15mpd 13 . . . . . . . . . 10 (𝜑 → (1 + 𝐴) # (1 − 𝐴))
176, 3negsubd 8236 . . . . . . . . . 10 (𝜑 → (1 + -𝐴) = (1 − 𝐴))
1816, 17breqtrrd 4017 . . . . . . . . 9 (𝜑 → (1 + 𝐴) # (1 + -𝐴))
193negcld 8217 . . . . . . . . . 10 (𝜑 → -𝐴 ∈ ℂ)
20 apadd2 8528 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # -𝐴 ↔ (1 + 𝐴) # (1 + -𝐴)))
213, 19, 6, 20syl3anc 1233 . . . . . . . . 9 (𝜑 → (𝐴 # -𝐴 ↔ (1 + 𝐴) # (1 + -𝐴)))
2218, 21mpbird 166 . . . . . . . 8 (𝜑𝐴 # -𝐴)
23 apadd2 8528 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 # -𝐴 ↔ (𝐴 + 𝐴) # (𝐴 + -𝐴)))
243, 19, 3, 23syl3anc 1233 . . . . . . . 8 (𝜑 → (𝐴 # -𝐴 ↔ (𝐴 + 𝐴) # (𝐴 + -𝐴)))
2522, 24mpbid 146 . . . . . . 7 (𝜑 → (𝐴 + 𝐴) # (𝐴 + -𝐴))
263negidd 8220 . . . . . . 7 (𝜑 → (𝐴 + -𝐴) = 0)
2725, 26breqtrd 4015 . . . . . 6 (𝜑 → (𝐴 + 𝐴) # 0)
284, 27eqbrtrd 4011 . . . . 5 (𝜑 → (2 · 𝐴) # 0)
291, 3, 28mulap0bbd 8578 . . . 4 (𝜑𝐴 # 0)
3029adantr 274 . . 3 ((𝜑𝑆 = 0) → 𝐴 # 0)
31 simpr 109 . . 3 ((𝜑𝑆 = 0) → 𝑆 = 0)
3230, 31breqtrrd 4017 . 2 ((𝜑𝑆 = 0) → 𝐴 # 𝑆)
334adantr 274 . . . 4 ((𝜑𝑆 ≠ 0) → (2 · 𝐴) = (𝐴 + 𝐴))
34 apdifflemr.as . . . . . . . 8 ((𝜑𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))))
353subid1d 8219 . . . . . . . . . . 11 (𝜑 → (𝐴 − 0) = 𝐴)
3635fveq2d 5500 . . . . . . . . . 10 (𝜑 → (abs‘(𝐴 − 0)) = (abs‘𝐴))
37 2z 9240 . . . . . . . . . . . . . . 15 2 ∈ ℤ
38 zq 9585 . . . . . . . . . . . . . . 15 (2 ∈ ℤ → 2 ∈ ℚ)
3937, 38ax-mp 5 . . . . . . . . . . . . . 14 2 ∈ ℚ
4039a1i 9 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℚ)
41 apdifflemr.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℚ)
42 qmulcl 9596 . . . . . . . . . . . . 13 ((2 ∈ ℚ ∧ 𝑆 ∈ ℚ) → (2 · 𝑆) ∈ ℚ)
4340, 41, 42syl2anc 409 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑆) ∈ ℚ)
44 qcn 9593 . . . . . . . . . . . 12 ((2 · 𝑆) ∈ ℚ → (2 · 𝑆) ∈ ℂ)
4543, 44syl 14 . . . . . . . . . . 11 (𝜑 → (2 · 𝑆) ∈ ℂ)
463, 45abssubd 11157 . . . . . . . . . 10 (𝜑 → (abs‘(𝐴 − (2 · 𝑆))) = (abs‘((2 · 𝑆) − 𝐴)))
4736, 46breq12d 4002 . . . . . . . . 9 (𝜑 → ((abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))) ↔ (abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴))))
4847adantr 274 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → ((abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))) ↔ (abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴))))
4934, 48mpbid 146 . . . . . . 7 ((𝜑𝑆 ≠ 0) → (abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴)))
503adantr 274 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝐴 ∈ ℂ)
5145, 3subcld 8230 . . . . . . . . 9 (𝜑 → ((2 · 𝑆) − 𝐴) ∈ ℂ)
5251adantr 274 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → ((2 · 𝑆) − 𝐴) ∈ ℂ)
53 absext 11027 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((2 · 𝑆) − 𝐴) ∈ ℂ) → ((abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴)) → 𝐴 # ((2 · 𝑆) − 𝐴)))
5450, 52, 53syl2anc 409 . . . . . . 7 ((𝜑𝑆 ≠ 0) → ((abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴)) → 𝐴 # ((2 · 𝑆) − 𝐴)))
5549, 54mpd 13 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝐴 # ((2 · 𝑆) − 𝐴))
56 apadd2 8528 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((2 · 𝑆) − 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 # ((2 · 𝑆) − 𝐴) ↔ (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴))))
5750, 52, 50, 56syl3anc 1233 . . . . . 6 ((𝜑𝑆 ≠ 0) → (𝐴 # ((2 · 𝑆) − 𝐴) ↔ (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴))))
5855, 57mpbid 146 . . . . 5 ((𝜑𝑆 ≠ 0) → (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴)))
5945adantr 274 . . . . . 6 ((𝜑𝑆 ≠ 0) → (2 · 𝑆) ∈ ℂ)
6050, 59pncan3d 8233 . . . . 5 ((𝜑𝑆 ≠ 0) → (𝐴 + ((2 · 𝑆) − 𝐴)) = (2 · 𝑆))
6158, 60breqtrd 4015 . . . 4 ((𝜑𝑆 ≠ 0) → (𝐴 + 𝐴) # (2 · 𝑆))
6233, 61eqbrtrd 4011 . . 3 ((𝜑𝑆 ≠ 0) → (2 · 𝐴) # (2 · 𝑆))
63 qcn 9593 . . . . . 6 (𝑆 ∈ ℚ → 𝑆 ∈ ℂ)
6441, 63syl 14 . . . . 5 (𝜑𝑆 ∈ ℂ)
6564adantr 274 . . . 4 ((𝜑𝑆 ≠ 0) → 𝑆 ∈ ℂ)
66 2cnd 8951 . . . 4 ((𝜑𝑆 ≠ 0) → 2 ∈ ℂ)
67 2ap0 8971 . . . . 5 2 # 0
6867a1i 9 . . . 4 ((𝜑𝑆 ≠ 0) → 2 # 0)
69 apmul2 8706 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑆 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (𝐴 # 𝑆 ↔ (2 · 𝐴) # (2 · 𝑆)))
7050, 65, 66, 68, 69syl112anc 1237 . . 3 ((𝜑𝑆 ≠ 0) → (𝐴 # 𝑆 ↔ (2 · 𝐴) # (2 · 𝑆)))
7162, 70mpbird 166 . 2 ((𝜑𝑆 ≠ 0) → 𝐴 # 𝑆)
72 0z 9223 . . . . . 6 0 ∈ ℤ
73 zq 9585 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
7472, 73ax-mp 5 . . . . 5 0 ∈ ℚ
75 qdceq 10203 . . . . 5 ((𝑆 ∈ ℚ ∧ 0 ∈ ℚ) → DECID 𝑆 = 0)
7641, 74, 75sylancl 411 . . . 4 (𝜑DECID 𝑆 = 0)
77 exmiddc 831 . . . 4 (DECID 𝑆 = 0 → (𝑆 = 0 ∨ ¬ 𝑆 = 0))
7876, 77syl 14 . . 3 (𝜑 → (𝑆 = 0 ∨ ¬ 𝑆 = 0))
79 df-ne 2341 . . . 4 (𝑆 ≠ 0 ↔ ¬ 𝑆 = 0)
8079orbi2i 757 . . 3 ((𝑆 = 0 ∨ 𝑆 ≠ 0) ↔ (𝑆 = 0 ∨ ¬ 𝑆 = 0))
8178, 80sylibr 133 . 2 (𝜑 → (𝑆 = 0 ∨ 𝑆 ≠ 0))
8232, 71, 81mpjaodan 793 1 (𝜑𝐴 # 𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wne 2340   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779  cmin 8090  -cneg 8091   # cap 8500  2c2 8929  cz 9212  cq 9578  abscabs 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  apdiff  14080
  Copyright terms: Public domain W3C validator