Mathbox for Jim Kingdon < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemr GIF version

Theorem apdifflemr 13301
 Description: Lemma for apdiff 13302. (Contributed by Jim Kingdon, 19-May-2024.)
Hypotheses
Ref Expression
apdifflemr.a (𝜑𝐴 ∈ ℝ)
apdifflemr.s (𝜑𝑆 ∈ ℚ)
apdifflemr.1 (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))
apdifflemr.as ((𝜑𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))))
Assertion
Ref Expression
apdifflemr (𝜑𝐴 # 𝑆)

Proof of Theorem apdifflemr
StepHypRef Expression
1 2cnd 8805 . . . . 5 (𝜑 → 2 ∈ ℂ)
2 apdifflemr.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
32recnd 7806 . . . . 5 (𝜑𝐴 ∈ ℂ)
432timesd 8974 . . . . . 6 (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴))
5 apdifflemr.1 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1)))
6 1cnd 7794 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
73, 6subnegd 8092 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 − -1) = (𝐴 + 1))
83, 6, 7comraddd 7931 . . . . . . . . . . . . 13 (𝜑 → (𝐴 − -1) = (1 + 𝐴))
98fveq2d 5425 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴 − -1)) = (abs‘(1 + 𝐴)))
103, 6abssubd 10977 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴 − 1)) = (abs‘(1 − 𝐴)))
115, 9, 103brtr3d 3959 . . . . . . . . . . 11 (𝜑 → (abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴)))
126, 3addcld 7797 . . . . . . . . . . . 12 (𝜑 → (1 + 𝐴) ∈ ℂ)
136, 3subcld 8085 . . . . . . . . . . . 12 (𝜑 → (1 − 𝐴) ∈ ℂ)
14 absext 10847 . . . . . . . . . . . 12 (((1 + 𝐴) ∈ ℂ ∧ (1 − 𝐴) ∈ ℂ) → ((abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴)) → (1 + 𝐴) # (1 − 𝐴)))
1512, 13, 14syl2anc 408 . . . . . . . . . . 11 (𝜑 → ((abs‘(1 + 𝐴)) # (abs‘(1 − 𝐴)) → (1 + 𝐴) # (1 − 𝐴)))
1611, 15mpd 13 . . . . . . . . . 10 (𝜑 → (1 + 𝐴) # (1 − 𝐴))
176, 3negsubd 8091 . . . . . . . . . 10 (𝜑 → (1 + -𝐴) = (1 − 𝐴))
1816, 17breqtrrd 3956 . . . . . . . . 9 (𝜑 → (1 + 𝐴) # (1 + -𝐴))
193negcld 8072 . . . . . . . . . 10 (𝜑 → -𝐴 ∈ ℂ)
20 apadd2 8383 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # -𝐴 ↔ (1 + 𝐴) # (1 + -𝐴)))
213, 19, 6, 20syl3anc 1216 . . . . . . . . 9 (𝜑 → (𝐴 # -𝐴 ↔ (1 + 𝐴) # (1 + -𝐴)))
2218, 21mpbird 166 . . . . . . . 8 (𝜑𝐴 # -𝐴)
23 apadd2 8383 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 # -𝐴 ↔ (𝐴 + 𝐴) # (𝐴 + -𝐴)))
243, 19, 3, 23syl3anc 1216 . . . . . . . 8 (𝜑 → (𝐴 # -𝐴 ↔ (𝐴 + 𝐴) # (𝐴 + -𝐴)))
2522, 24mpbid 146 . . . . . . 7 (𝜑 → (𝐴 + 𝐴) # (𝐴 + -𝐴))
263negidd 8075 . . . . . . 7 (𝜑 → (𝐴 + -𝐴) = 0)
2725, 26breqtrd 3954 . . . . . 6 (𝜑 → (𝐴 + 𝐴) # 0)
284, 27eqbrtrd 3950 . . . . 5 (𝜑 → (2 · 𝐴) # 0)
291, 3, 28mulap0bbd 8433 . . . 4 (𝜑𝐴 # 0)
3029adantr 274 . . 3 ((𝜑𝑆 = 0) → 𝐴 # 0)
31 simpr 109 . . 3 ((𝜑𝑆 = 0) → 𝑆 = 0)
3230, 31breqtrrd 3956 . 2 ((𝜑𝑆 = 0) → 𝐴 # 𝑆)
334adantr 274 . . . 4 ((𝜑𝑆 ≠ 0) → (2 · 𝐴) = (𝐴 + 𝐴))
34 apdifflemr.as . . . . . . . 8 ((𝜑𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))))
353subid1d 8074 . . . . . . . . . . 11 (𝜑 → (𝐴 − 0) = 𝐴)
3635fveq2d 5425 . . . . . . . . . 10 (𝜑 → (abs‘(𝐴 − 0)) = (abs‘𝐴))
37 2z 9094 . . . . . . . . . . . . . . 15 2 ∈ ℤ
38 zq 9430 . . . . . . . . . . . . . . 15 (2 ∈ ℤ → 2 ∈ ℚ)
3937, 38ax-mp 5 . . . . . . . . . . . . . 14 2 ∈ ℚ
4039a1i 9 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℚ)
41 apdifflemr.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℚ)
42 qmulcl 9441 . . . . . . . . . . . . 13 ((2 ∈ ℚ ∧ 𝑆 ∈ ℚ) → (2 · 𝑆) ∈ ℚ)
4340, 41, 42syl2anc 408 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑆) ∈ ℚ)
44 qcn 9438 . . . . . . . . . . . 12 ((2 · 𝑆) ∈ ℚ → (2 · 𝑆) ∈ ℂ)
4543, 44syl 14 . . . . . . . . . . 11 (𝜑 → (2 · 𝑆) ∈ ℂ)
463, 45abssubd 10977 . . . . . . . . . 10 (𝜑 → (abs‘(𝐴 − (2 · 𝑆))) = (abs‘((2 · 𝑆) − 𝐴)))
4736, 46breq12d 3942 . . . . . . . . 9 (𝜑 → ((abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))) ↔ (abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴))))
4847adantr 274 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → ((abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆))) ↔ (abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴))))
4934, 48mpbid 146 . . . . . . 7 ((𝜑𝑆 ≠ 0) → (abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴)))
503adantr 274 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝐴 ∈ ℂ)
5145, 3subcld 8085 . . . . . . . . 9 (𝜑 → ((2 · 𝑆) − 𝐴) ∈ ℂ)
5251adantr 274 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → ((2 · 𝑆) − 𝐴) ∈ ℂ)
53 absext 10847 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((2 · 𝑆) − 𝐴) ∈ ℂ) → ((abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴)) → 𝐴 # ((2 · 𝑆) − 𝐴)))
5450, 52, 53syl2anc 408 . . . . . . 7 ((𝜑𝑆 ≠ 0) → ((abs‘𝐴) # (abs‘((2 · 𝑆) − 𝐴)) → 𝐴 # ((2 · 𝑆) − 𝐴)))
5549, 54mpd 13 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝐴 # ((2 · 𝑆) − 𝐴))
56 apadd2 8383 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((2 · 𝑆) − 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 # ((2 · 𝑆) − 𝐴) ↔ (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴))))
5750, 52, 50, 56syl3anc 1216 . . . . . 6 ((𝜑𝑆 ≠ 0) → (𝐴 # ((2 · 𝑆) − 𝐴) ↔ (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴))))
5855, 57mpbid 146 . . . . 5 ((𝜑𝑆 ≠ 0) → (𝐴 + 𝐴) # (𝐴 + ((2 · 𝑆) − 𝐴)))
5945adantr 274 . . . . . 6 ((𝜑𝑆 ≠ 0) → (2 · 𝑆) ∈ ℂ)
6050, 59pncan3d 8088 . . . . 5 ((𝜑𝑆 ≠ 0) → (𝐴 + ((2 · 𝑆) − 𝐴)) = (2 · 𝑆))
6158, 60breqtrd 3954 . . . 4 ((𝜑𝑆 ≠ 0) → (𝐴 + 𝐴) # (2 · 𝑆))
6233, 61eqbrtrd 3950 . . 3 ((𝜑𝑆 ≠ 0) → (2 · 𝐴) # (2 · 𝑆))
63 qcn 9438 . . . . . 6 (𝑆 ∈ ℚ → 𝑆 ∈ ℂ)
6441, 63syl 14 . . . . 5 (𝜑𝑆 ∈ ℂ)
6564adantr 274 . . . 4 ((𝜑𝑆 ≠ 0) → 𝑆 ∈ ℂ)
66 2cnd 8805 . . . 4 ((𝜑𝑆 ≠ 0) → 2 ∈ ℂ)
67 2ap0 8825 . . . . 5 2 # 0
6867a1i 9 . . . 4 ((𝜑𝑆 ≠ 0) → 2 # 0)
69 apmul2 8561 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑆 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (𝐴 # 𝑆 ↔ (2 · 𝐴) # (2 · 𝑆)))
7050, 65, 66, 68, 69syl112anc 1220 . . 3 ((𝜑𝑆 ≠ 0) → (𝐴 # 𝑆 ↔ (2 · 𝐴) # (2 · 𝑆)))
7162, 70mpbird 166 . 2 ((𝜑𝑆 ≠ 0) → 𝐴 # 𝑆)
72 0z 9077 . . . . . 6 0 ∈ ℤ
73 zq 9430 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
7472, 73ax-mp 5 . . . . 5 0 ∈ ℚ
75 qdceq 10036 . . . . 5 ((𝑆 ∈ ℚ ∧ 0 ∈ ℚ) → DECID 𝑆 = 0)
7641, 74, 75sylancl 409 . . . 4 (𝜑DECID 𝑆 = 0)
77 exmiddc 821 . . . 4 (DECID 𝑆 = 0 → (𝑆 = 0 ∨ ¬ 𝑆 = 0))
7876, 77syl 14 . . 3 (𝜑 → (𝑆 = 0 ∨ ¬ 𝑆 = 0))
79 df-ne 2309 . . . 4 (𝑆 ≠ 0 ↔ ¬ 𝑆 = 0)
8079orbi2i 751 . . 3 ((𝑆 = 0 ∨ 𝑆 ≠ 0) ↔ (𝑆 = 0 ∨ ¬ 𝑆 = 0))
8178, 80sylibr 133 . 2 (𝜑 → (𝑆 = 0 ∨ 𝑆 ≠ 0))
8232, 71, 81mpjaodan 787 1 (𝜑𝐴 # 𝑆)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697  DECID wdc 819   = wceq 1331   ∈ wcel 1480   ≠ wne 2308   class class class wbr 3929  ‘cfv 5123  (class class class)co 5774  ℂcc 7630  ℝcr 7631  0cc0 7632  1c1 7633   + caddc 7635   · cmul 7637   − cmin 7945  -cneg 7946   # cap 8355  2c2 8783  ℤcz 9066  ℚcq 9423  abscabs 10781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783 This theorem is referenced by:  apdiff  13302
 Copyright terms: Public domain W3C validator