Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  metrtri GIF version

Theorem metrtri 12576
 Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.)
Assertion
Ref Expression
metrtri ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))

Proof of Theorem metrtri
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐷 ∈ (Met‘𝑋))
2 simpr2 989 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
3 simpr3 990 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
4 simpr1 988 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
5 mettri 12572 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐵𝑋𝐶𝑋𝐴𝑋)) → (𝐵𝐷𝐶) ≤ ((𝐵𝐷𝐴) + (𝐴𝐷𝐶)))
61, 2, 3, 4, 5syl13anc 1219 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ≤ ((𝐵𝐷𝐴) + (𝐴𝐷𝐶)))
7 metcl 12552 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ)
81, 4, 2, 7syl3anc 1217 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ∈ ℝ)
98recnd 7814 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ∈ ℂ)
10 metcl 12552 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ ℝ)
111, 4, 3, 10syl3anc 1217 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ ℝ)
1211recnd 7814 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ ℂ)
13 metsym 12570 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
141, 2, 4, 13syl3anc 1217 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
1514oveq1d 5793 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐷𝐴) + (𝐴𝐷𝐶)) = ((𝐴𝐷𝐵) + (𝐴𝐷𝐶)))
169, 12, 15comraddd 7939 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐷𝐴) + (𝐴𝐷𝐶)) = ((𝐴𝐷𝐶) + (𝐴𝐷𝐵)))
176, 16breqtrd 3958 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ≤ ((𝐴𝐷𝐶) + (𝐴𝐷𝐵)))
18 metcl 12552 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) ∈ ℝ)
191, 2, 3, 18syl3anc 1217 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ∈ ℝ)
2019, 8, 11lesubaddd 8324 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (((𝐵𝐷𝐶) − (𝐴𝐷𝐵)) ≤ (𝐴𝐷𝐶) ↔ (𝐵𝐷𝐶) ≤ ((𝐴𝐷𝐶) + (𝐴𝐷𝐵))))
2117, 20mpbird 166 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐷𝐶) − (𝐴𝐷𝐵)) ≤ (𝐴𝐷𝐶))
22 mettri 12572 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) + (𝐵𝐷𝐶)))
231, 4, 3, 2, 22syl13anc 1219 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) + (𝐵𝐷𝐶)))
2419recnd 7814 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ∈ ℂ)
259, 24addcomd 7933 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵) + (𝐵𝐷𝐶)) = ((𝐵𝐷𝐶) + (𝐴𝐷𝐵)))
2623, 25breqtrd 3958 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐵𝐷𝐶) + (𝐴𝐷𝐵)))
2711, 19, 8absdifled 10979 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵) ↔ (((𝐵𝐷𝐶) − (𝐴𝐷𝐵)) ≤ (𝐴𝐷𝐶) ∧ (𝐴𝐷𝐶) ≤ ((𝐵𝐷𝐶) + (𝐴𝐷𝐵)))))
2821, 26, 27mpbir2and 929 1 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   class class class wbr 3933  ‘cfv 5127  (class class class)co 5778  ℝcr 7639   + caddc 7643   ≤ cle 7821   − cmin 7953  abscabs 10797  Metcmet 12180 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-mulrcl 7739  ax-addcom 7740  ax-mulcom 7741  ax-addass 7742  ax-mulass 7743  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-1rid 7747  ax-0id 7748  ax-rnegex 7749  ax-precex 7750  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-apti 7755  ax-pre-ltadd 7756  ax-pre-mulgt0 7757  ax-pre-mulext 7758  ax-arch 7759  ax-caucvg 7760 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-po 4222  df-iso 4223  df-iord 4292  df-on 4294  df-ilim 4295  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-frec 6292  df-map 6548  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-reap 8357  df-ap 8364  df-div 8453  df-inn 8741  df-2 8799  df-3 8800  df-4 8801  df-n0 8998  df-z 9075  df-uz 9347  df-rp 9467  df-xadd 9586  df-seqfrec 10246  df-exp 10320  df-cj 10642  df-re 10643  df-im 10644  df-rsqrt 10798  df-abs 10799  df-xmet 12187  df-met 12188 This theorem is referenced by:  msrtri  12675
 Copyright terms: Public domain W3C validator