| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metrtri | GIF version | ||
| Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.) |
| Ref | Expression |
|---|---|
| metrtri | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐷 ∈ (Met‘𝑋)) | |
| 2 | simpr2 1006 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
| 3 | simpr3 1007 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
| 4 | simpr1 1005 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 5 | mettri 14693 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝐷𝐶) ≤ ((𝐵𝐷𝐴) + (𝐴𝐷𝐶))) | |
| 6 | 1, 2, 3, 4, 5 | syl13anc 1251 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) ≤ ((𝐵𝐷𝐴) + (𝐴𝐷𝐶))) |
| 7 | metcl 14673 | . . . . . . 7 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | |
| 8 | 1, 4, 2, 7 | syl3anc 1249 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ∈ ℝ) |
| 9 | 8 | recnd 8072 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ∈ ℂ) |
| 10 | metcl 14673 | . . . . . . 7 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐷𝐶) ∈ ℝ) | |
| 11 | 1, 4, 3, 10 | syl3anc 1249 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐶) ∈ ℝ) |
| 12 | 11 | recnd 8072 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐶) ∈ ℂ) |
| 13 | metsym 14691 | . . . . . . 7 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) | |
| 14 | 1, 2, 4, 13 | syl3anc 1249 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) |
| 15 | 14 | oveq1d 5940 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐷𝐴) + (𝐴𝐷𝐶)) = ((𝐴𝐷𝐵) + (𝐴𝐷𝐶))) |
| 16 | 9, 12, 15 | comraddd 8200 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐷𝐴) + (𝐴𝐷𝐶)) = ((𝐴𝐷𝐶) + (𝐴𝐷𝐵))) |
| 17 | 6, 16 | breqtrd 4060 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) ≤ ((𝐴𝐷𝐶) + (𝐴𝐷𝐵))) |
| 18 | metcl 14673 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷𝐶) ∈ ℝ) | |
| 19 | 1, 2, 3, 18 | syl3anc 1249 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) ∈ ℝ) |
| 20 | 19, 8, 11 | lesubaddd 8586 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (((𝐵𝐷𝐶) − (𝐴𝐷𝐵)) ≤ (𝐴𝐷𝐶) ↔ (𝐵𝐷𝐶) ≤ ((𝐴𝐷𝐶) + (𝐴𝐷𝐵)))) |
| 21 | 17, 20 | mpbird 167 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐷𝐶) − (𝐴𝐷𝐵)) ≤ (𝐴𝐷𝐶)) |
| 22 | mettri 14693 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) + (𝐵𝐷𝐶))) | |
| 23 | 1, 4, 3, 2, 22 | syl13anc 1251 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) + (𝐵𝐷𝐶))) |
| 24 | 19 | recnd 8072 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) ∈ ℂ) |
| 25 | 9, 24 | addcomd 8194 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵) + (𝐵𝐷𝐶)) = ((𝐵𝐷𝐶) + (𝐴𝐷𝐵))) |
| 26 | 23, 25 | breqtrd 4060 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐵𝐷𝐶) + (𝐴𝐷𝐵))) |
| 27 | 11, 19, 8 | absdifled 11361 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵) ↔ (((𝐵𝐷𝐶) − (𝐴𝐷𝐵)) ≤ (𝐴𝐷𝐶) ∧ (𝐴𝐷𝐶) ≤ ((𝐵𝐷𝐶) + (𝐴𝐷𝐵))))) |
| 28 | 21, 26, 27 | mpbir2and 946 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℝcr 7895 + caddc 7899 ≤ cle 8079 − cmin 8214 abscabs 11179 Metcmet 14169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-map 6718 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-rp 9746 df-xadd 9865 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-xmet 14176 df-met 14177 |
| This theorem is referenced by: msrtri 14796 |
| Copyright terms: Public domain | W3C validator |