ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metrtri GIF version

Theorem metrtri 15059
Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.)
Assertion
Ref Expression
metrtri ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))

Proof of Theorem metrtri
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐷 ∈ (Met‘𝑋))
2 simpr2 1028 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
3 simpr3 1029 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
4 simpr1 1027 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
5 mettri 15055 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐵𝑋𝐶𝑋𝐴𝑋)) → (𝐵𝐷𝐶) ≤ ((𝐵𝐷𝐴) + (𝐴𝐷𝐶)))
61, 2, 3, 4, 5syl13anc 1273 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ≤ ((𝐵𝐷𝐴) + (𝐴𝐷𝐶)))
7 metcl 15035 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ)
81, 4, 2, 7syl3anc 1271 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ∈ ℝ)
98recnd 8183 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ∈ ℂ)
10 metcl 15035 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ ℝ)
111, 4, 3, 10syl3anc 1271 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ ℝ)
1211recnd 8183 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ ℂ)
13 metsym 15053 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
141, 2, 4, 13syl3anc 1271 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
1514oveq1d 6022 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐷𝐴) + (𝐴𝐷𝐶)) = ((𝐴𝐷𝐵) + (𝐴𝐷𝐶)))
169, 12, 15comraddd 8311 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐷𝐴) + (𝐴𝐷𝐶)) = ((𝐴𝐷𝐶) + (𝐴𝐷𝐵)))
176, 16breqtrd 4109 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ≤ ((𝐴𝐷𝐶) + (𝐴𝐷𝐵)))
18 metcl 15035 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) ∈ ℝ)
191, 2, 3, 18syl3anc 1271 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ∈ ℝ)
2019, 8, 11lesubaddd 8697 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (((𝐵𝐷𝐶) − (𝐴𝐷𝐵)) ≤ (𝐴𝐷𝐶) ↔ (𝐵𝐷𝐶) ≤ ((𝐴𝐷𝐶) + (𝐴𝐷𝐵))))
2117, 20mpbird 167 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐷𝐶) − (𝐴𝐷𝐵)) ≤ (𝐴𝐷𝐶))
22 mettri 15055 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) + (𝐵𝐷𝐶)))
231, 4, 3, 2, 22syl13anc 1273 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐴𝐷𝐵) + (𝐵𝐷𝐶)))
2419recnd 8183 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) ∈ ℂ)
259, 24addcomd 8305 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵) + (𝐵𝐷𝐶)) = ((𝐵𝐷𝐶) + (𝐴𝐷𝐵)))
2623, 25breqtrd 4109 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ≤ ((𝐵𝐷𝐶) + (𝐴𝐷𝐵)))
2711, 19, 8absdifled 11698 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵) ↔ (((𝐵𝐷𝐶) − (𝐴𝐷𝐵)) ≤ (𝐴𝐷𝐶) ∧ (𝐴𝐷𝐶) ≤ ((𝐵𝐷𝐶) + (𝐴𝐷𝐵)))))
2821, 26, 27mpbir2and 950 1 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  cr 8006   + caddc 8010  cle 8190  cmin 8325  abscabs 11516  Metcmet 14509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-xadd 9977  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-xmet 14516  df-met 14517
This theorem is referenced by:  msrtri  15158
  Copyright terms: Public domain W3C validator