Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcomd | GIF version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcom 8056 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-addcom 7874 |
This theorem is referenced by: muladd11r 8075 comraddd 8076 subadd2 8123 pncan 8125 npcan 8128 subcan 8174 mvlladdd 8284 subaddeqd 8288 addrsub 8290 ltadd1 8348 leadd2 8350 ltsubadd2 8352 lesubadd2 8354 mulreim 8523 apadd2 8528 recp1lt1 8815 ltaddrp2d 9688 lincmb01cmp 9960 iccf1o 9961 rebtwn2zlemstep 10209 qavgle 10215 modqaddabs 10318 mulqaddmodid 10320 qnegmod 10325 modqadd2mod 10330 modqadd12d 10336 modqaddmulmod 10347 addmodlteq 10354 expaddzap 10520 bcn2m1 10703 bcn2p1 10704 remullem 10835 resqrexlemover 10974 maxabslemab 11170 maxabslemval 11172 bdtrilem 11202 climaddc2 11293 telfsumo 11429 fsumparts 11433 bcxmas 11452 isumshft 11453 cvgratnnlemsumlt 11491 cosneg 11690 sinadd 11699 sincossq 11711 cos2t 11713 absefi 11731 absefib 11733 gcdaddm 11939 pythagtrip 12237 metrtri 13171 2sqlem3 13747 apdifflemf 14078 apdiff 14080 |
Copyright terms: Public domain | W3C validator |