![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcomd | GIF version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcom 8094 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 (class class class)co 5875 ℂcc 7809 + caddc 7814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 7911 |
This theorem is referenced by: muladd11r 8113 comraddd 8114 subadd2 8161 pncan 8163 npcan 8166 subcan 8212 mvlladdd 8322 subaddeqd 8326 addrsub 8328 ltadd1 8386 leadd2 8388 ltsubadd2 8390 lesubadd2 8392 mulreim 8561 apadd2 8566 recp1lt1 8856 ltaddrp2d 9731 lincmb01cmp 10003 iccf1o 10004 rebtwn2zlemstep 10253 qavgle 10259 modqaddabs 10362 mulqaddmodid 10364 qnegmod 10369 modqadd2mod 10374 modqadd12d 10380 modqaddmulmod 10391 addmodlteq 10398 expaddzap 10564 bcn2m1 10749 bcn2p1 10750 remullem 10880 resqrexlemover 11019 maxabslemab 11215 maxabslemval 11217 bdtrilem 11247 climaddc2 11338 telfsumo 11474 fsumparts 11478 bcxmas 11497 isumshft 11498 cvgratnnlemsumlt 11536 cosneg 11735 sinadd 11744 sincossq 11756 cos2t 11758 absefi 11776 absefib 11778 gcdaddm 11985 pythagtrip 12283 mulgnndir 13012 mulgdirlem 13014 metrtri 13880 lgseisenlem1 14453 2sqlem3 14467 apdifflemf 14797 apdiff 14799 |
Copyright terms: Public domain | W3C validator |