![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcomd | GIF version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcom 8108 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 (class class class)co 5888 ℂcc 7823 + caddc 7828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 7925 |
This theorem is referenced by: muladd11r 8127 comraddd 8128 subadd2 8175 pncan 8177 npcan 8180 subcan 8226 mvlladdd 8336 subaddeqd 8340 addrsub 8342 ltadd1 8400 leadd2 8402 ltsubadd2 8404 lesubadd2 8406 mulreim 8575 apadd2 8580 recp1lt1 8870 ltaddrp2d 9745 lincmb01cmp 10017 iccf1o 10018 rebtwn2zlemstep 10267 qavgle 10273 modqaddabs 10376 mulqaddmodid 10378 qnegmod 10383 modqadd2mod 10388 modqadd12d 10394 modqaddmulmod 10405 addmodlteq 10412 expaddzap 10578 bcn2m1 10763 bcn2p1 10764 remullem 10894 resqrexlemover 11033 maxabslemab 11229 maxabslemval 11231 bdtrilem 11261 climaddc2 11352 telfsumo 11488 fsumparts 11492 bcxmas 11511 isumshft 11512 cvgratnnlemsumlt 11550 cosneg 11749 sinadd 11758 sincossq 11770 cos2t 11772 absefi 11790 absefib 11792 gcdaddm 11999 pythagtrip 12297 mulgnndir 13044 mulgdirlem 13046 metrtri 14173 lgseisenlem1 14746 2sqlem3 14760 apdifflemf 15091 apdiff 15093 |
Copyright terms: Public domain | W3C validator |