| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomd | GIF version | ||
| Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcom 8182 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 7998 |
| This theorem is referenced by: muladd11r 8201 comraddd 8202 subadd2 8249 pncan 8251 npcan 8254 subcan 8300 mvlladdd 8410 subaddeqd 8414 addrsub 8416 ltadd1 8475 leadd2 8477 ltsubadd2 8479 lesubadd2 8481 mulreim 8650 apadd2 8655 recp1lt1 8945 ltaddrp2d 9825 lincmb01cmp 10097 iccf1o 10098 rebtwn2zlemstep 10361 qavgle 10367 modqaddabs 10473 mulqaddmodid 10475 qnegmod 10480 modqadd2mod 10485 modqadd12d 10491 modqaddmulmod 10502 addmodlteq 10509 expaddzap 10694 bcn2m1 10880 bcn2p1 10881 remullem 11055 resqrexlemover 11194 maxabslemab 11390 maxabslemval 11392 bdtrilem 11423 climaddc2 11514 telfsumo 11650 fsumparts 11654 bcxmas 11673 isumshft 11674 cvgratnnlemsumlt 11712 cosneg 11911 sinadd 11920 sincossq 11932 cos2t 11934 absefi 11953 absefib 11955 gcdaddm 12178 pythagtrip 12479 pcadd2 12537 mulgnndir 13359 mulgdirlem 13361 metrtri 14699 plymullem1 15070 lgseisenlem1 15397 2sqlem3 15444 apdifflemf 15781 apdiff 15783 |
| Copyright terms: Public domain | W3C validator |