| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomd | GIF version | ||
| Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcom 8251 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 8067 |
| This theorem is referenced by: muladd11r 8270 comraddd 8271 subadd2 8318 pncan 8320 npcan 8323 subcan 8369 mvlladdd 8479 subaddeqd 8483 addrsub 8485 ltadd1 8544 leadd2 8546 ltsubadd2 8548 lesubadd2 8550 mulreim 8719 apadd2 8724 recp1lt1 9014 ltaddrp2d 9895 lincmb01cmp 10167 iccf1o 10168 elfzoext 10365 rebtwn2zlemstep 10439 qavgle 10445 modqaddabs 10551 mulqaddmodid 10553 qnegmod 10558 modqadd2mod 10563 modqadd12d 10569 modqaddmulmod 10580 addmodlteq 10587 expaddzap 10772 bcn2m1 10958 bcn2p1 10959 lenrevpfxcctswrd 11210 remullem 11348 resqrexlemover 11487 maxabslemab 11683 maxabslemval 11685 bdtrilem 11716 climaddc2 11807 telfsumo 11943 fsumparts 11947 bcxmas 11966 isumshft 11967 cvgratnnlemsumlt 12005 cosneg 12204 sinadd 12213 sincossq 12225 cos2t 12227 absefi 12246 absefib 12248 gcdaddm 12471 pythagtrip 12772 pcadd2 12830 mulgnndir 13654 mulgdirlem 13656 metrtri 15016 plymullem1 15387 lgseisenlem1 15714 2sqlem3 15761 apdifflemf 16325 apdiff 16327 |
| Copyright terms: Public domain | W3C validator |