| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomd | GIF version | ||
| Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcom 8180 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 + caddc 7899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 7996 |
| This theorem is referenced by: muladd11r 8199 comraddd 8200 subadd2 8247 pncan 8249 npcan 8252 subcan 8298 mvlladdd 8408 subaddeqd 8412 addrsub 8414 ltadd1 8473 leadd2 8475 ltsubadd2 8477 lesubadd2 8479 mulreim 8648 apadd2 8653 recp1lt1 8943 ltaddrp2d 9823 lincmb01cmp 10095 iccf1o 10096 rebtwn2zlemstep 10359 qavgle 10365 modqaddabs 10471 mulqaddmodid 10473 qnegmod 10478 modqadd2mod 10483 modqadd12d 10489 modqaddmulmod 10500 addmodlteq 10507 expaddzap 10692 bcn2m1 10878 bcn2p1 10879 remullem 11053 resqrexlemover 11192 maxabslemab 11388 maxabslemval 11390 bdtrilem 11421 climaddc2 11512 telfsumo 11648 fsumparts 11652 bcxmas 11671 isumshft 11672 cvgratnnlemsumlt 11710 cosneg 11909 sinadd 11918 sincossq 11930 cos2t 11932 absefi 11951 absefib 11953 gcdaddm 12176 pythagtrip 12477 pcadd2 12535 mulgnndir 13357 mulgdirlem 13359 metrtri 14697 plymullem1 15068 lgseisenlem1 15395 2sqlem3 15442 apdifflemf 15777 apdiff 15779 |
| Copyright terms: Public domain | W3C validator |