Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcomd | GIF version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcom 8031 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 + caddc 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-addcom 7849 |
This theorem is referenced by: muladd11r 8050 comraddd 8051 subadd2 8098 pncan 8100 npcan 8103 subcan 8149 mvlladdd 8259 subaddeqd 8263 addrsub 8265 ltadd1 8323 leadd2 8325 ltsubadd2 8327 lesubadd2 8329 mulreim 8498 apadd2 8503 recp1lt1 8790 ltaddrp2d 9663 lincmb01cmp 9935 iccf1o 9936 rebtwn2zlemstep 10184 qavgle 10190 modqaddabs 10293 mulqaddmodid 10295 qnegmod 10300 modqadd2mod 10305 modqadd12d 10311 modqaddmulmod 10322 addmodlteq 10329 expaddzap 10495 bcn2m1 10678 bcn2p1 10679 remullem 10809 resqrexlemover 10948 maxabslemab 11144 maxabslemval 11146 bdtrilem 11176 climaddc2 11267 telfsumo 11403 fsumparts 11407 bcxmas 11426 isumshft 11427 cvgratnnlemsumlt 11465 cosneg 11664 sinadd 11673 sincossq 11685 cos2t 11687 absefi 11705 absefib 11707 gcdaddm 11913 pythagtrip 12211 metrtri 12977 2sqlem3 13553 apdifflemf 13885 apdiff 13887 |
Copyright terms: Public domain | W3C validator |