| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomd | GIF version | ||
| Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcom 8291 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 8107 |
| This theorem is referenced by: muladd11r 8310 comraddd 8311 subadd2 8358 pncan 8360 npcan 8363 subcan 8409 mvlladdd 8519 subaddeqd 8523 addrsub 8525 ltadd1 8584 leadd2 8586 ltsubadd2 8588 lesubadd2 8590 mulreim 8759 apadd2 8764 recp1lt1 9054 ltaddrp2d 9935 lincmb01cmp 10207 iccf1o 10208 elfzoext 10406 rebtwn2zlemstep 10480 qavgle 10486 modqaddabs 10592 mulqaddmodid 10594 qnegmod 10599 modqadd2mod 10604 modqadd12d 10610 modqaddmulmod 10621 addmodlteq 10628 expaddzap 10813 bcn2m1 10999 bcn2p1 11000 lenrevpfxcctswrd 11252 remullem 11390 resqrexlemover 11529 maxabslemab 11725 maxabslemval 11727 bdtrilem 11758 climaddc2 11849 telfsumo 11985 fsumparts 11989 bcxmas 12008 isumshft 12009 cvgratnnlemsumlt 12047 cosneg 12246 sinadd 12255 sincossq 12267 cos2t 12269 absefi 12288 absefib 12290 gcdaddm 12513 pythagtrip 12814 pcadd2 12872 mulgnndir 13696 mulgdirlem 13698 metrtri 15059 plymullem1 15430 lgseisenlem1 15757 2sqlem3 15804 apdifflemf 16444 apdiff 16446 |
| Copyright terms: Public domain | W3C validator |