| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomd | GIF version | ||
| Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcom 8216 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 + caddc 7935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 8032 |
| This theorem is referenced by: muladd11r 8235 comraddd 8236 subadd2 8283 pncan 8285 npcan 8288 subcan 8334 mvlladdd 8444 subaddeqd 8448 addrsub 8450 ltadd1 8509 leadd2 8511 ltsubadd2 8513 lesubadd2 8515 mulreim 8684 apadd2 8689 recp1lt1 8979 ltaddrp2d 9860 lincmb01cmp 10132 iccf1o 10133 elfzoext 10328 rebtwn2zlemstep 10402 qavgle 10408 modqaddabs 10514 mulqaddmodid 10516 qnegmod 10521 modqadd2mod 10526 modqadd12d 10532 modqaddmulmod 10543 addmodlteq 10550 expaddzap 10735 bcn2m1 10921 bcn2p1 10922 remullem 11226 resqrexlemover 11365 maxabslemab 11561 maxabslemval 11563 bdtrilem 11594 climaddc2 11685 telfsumo 11821 fsumparts 11825 bcxmas 11844 isumshft 11845 cvgratnnlemsumlt 11883 cosneg 12082 sinadd 12091 sincossq 12103 cos2t 12105 absefi 12124 absefib 12126 gcdaddm 12349 pythagtrip 12650 pcadd2 12708 mulgnndir 13531 mulgdirlem 13533 metrtri 14893 plymullem1 15264 lgseisenlem1 15591 2sqlem3 15638 apdifflemf 16059 apdiff 16061 |
| Copyright terms: Public domain | W3C validator |