![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcomd | GIF version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcom 8114 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 (class class class)co 5892 ℂcc 7829 + caddc 7834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 7931 |
This theorem is referenced by: muladd11r 8133 comraddd 8134 subadd2 8181 pncan 8183 npcan 8186 subcan 8232 mvlladdd 8342 subaddeqd 8346 addrsub 8348 ltadd1 8406 leadd2 8408 ltsubadd2 8410 lesubadd2 8412 mulreim 8581 apadd2 8586 recp1lt1 8876 ltaddrp2d 9751 lincmb01cmp 10023 iccf1o 10024 rebtwn2zlemstep 10273 qavgle 10279 modqaddabs 10382 mulqaddmodid 10384 qnegmod 10389 modqadd2mod 10394 modqadd12d 10400 modqaddmulmod 10411 addmodlteq 10418 expaddzap 10584 bcn2m1 10769 bcn2p1 10770 remullem 10900 resqrexlemover 11039 maxabslemab 11235 maxabslemval 11237 bdtrilem 11267 climaddc2 11358 telfsumo 11494 fsumparts 11498 bcxmas 11517 isumshft 11518 cvgratnnlemsumlt 11556 cosneg 11755 sinadd 11764 sincossq 11776 cos2t 11778 absefi 11796 absefib 11798 gcdaddm 12005 pythagtrip 12303 mulgnndir 13064 mulgdirlem 13066 metrtri 14289 lgseisenlem1 14862 2sqlem3 14876 apdifflemf 15207 apdiff 15209 |
Copyright terms: Public domain | W3C validator |