![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcomd | GIF version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcom 8156 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 7972 |
This theorem is referenced by: muladd11r 8175 comraddd 8176 subadd2 8223 pncan 8225 npcan 8228 subcan 8274 mvlladdd 8384 subaddeqd 8388 addrsub 8390 ltadd1 8448 leadd2 8450 ltsubadd2 8452 lesubadd2 8454 mulreim 8623 apadd2 8628 recp1lt1 8918 ltaddrp2d 9797 lincmb01cmp 10069 iccf1o 10070 rebtwn2zlemstep 10321 qavgle 10327 modqaddabs 10433 mulqaddmodid 10435 qnegmod 10440 modqadd2mod 10445 modqadd12d 10451 modqaddmulmod 10462 addmodlteq 10469 expaddzap 10654 bcn2m1 10840 bcn2p1 10841 remullem 11015 resqrexlemover 11154 maxabslemab 11350 maxabslemval 11352 bdtrilem 11382 climaddc2 11473 telfsumo 11609 fsumparts 11613 bcxmas 11632 isumshft 11633 cvgratnnlemsumlt 11671 cosneg 11870 sinadd 11879 sincossq 11891 cos2t 11893 absefi 11912 absefib 11914 gcdaddm 12121 pythagtrip 12421 pcadd2 12479 mulgnndir 13221 mulgdirlem 13223 metrtri 14545 plymullem1 14894 lgseisenlem1 15186 2sqlem3 15204 apdifflemf 15536 apdiff 15538 |
Copyright terms: Public domain | W3C validator |