| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomd | GIF version | ||
| Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addcomd | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcom 8168 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7882 + caddc 7887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 7984 |
| This theorem is referenced by: muladd11r 8187 comraddd 8188 subadd2 8235 pncan 8237 npcan 8240 subcan 8286 mvlladdd 8396 subaddeqd 8400 addrsub 8402 ltadd1 8461 leadd2 8463 ltsubadd2 8465 lesubadd2 8467 mulreim 8636 apadd2 8641 recp1lt1 8931 ltaddrp2d 9811 lincmb01cmp 10083 iccf1o 10084 rebtwn2zlemstep 10347 qavgle 10353 modqaddabs 10459 mulqaddmodid 10461 qnegmod 10466 modqadd2mod 10471 modqadd12d 10477 modqaddmulmod 10488 addmodlteq 10495 expaddzap 10680 bcn2m1 10866 bcn2p1 10867 remullem 11041 resqrexlemover 11180 maxabslemab 11376 maxabslemval 11378 bdtrilem 11409 climaddc2 11500 telfsumo 11636 fsumparts 11640 bcxmas 11659 isumshft 11660 cvgratnnlemsumlt 11698 cosneg 11897 sinadd 11906 sincossq 11918 cos2t 11920 absefi 11939 absefib 11941 gcdaddm 12164 pythagtrip 12465 pcadd2 12523 mulgnndir 13328 mulgdirlem 13330 metrtri 14660 plymullem1 15031 lgseisenlem1 15358 2sqlem3 15405 apdifflemf 15740 apdiff 15742 |
| Copyright terms: Public domain | W3C validator |