| Step | Hyp | Ref
| Expression |
| 1 | | prmnn 12278 |
. . . 4
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 2 | | nnnn0 9256 |
. . . 4
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℕ0) |
| 3 | | nnexpcl 10644 |
. . . 4
⊢ ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0)
→ (𝑃↑𝐾) ∈
ℕ) |
| 4 | 1, 2, 3 | syl2an 289 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) ∈ ℕ) |
| 5 | | phival 12381 |
. . 3
⊢ ((𝑃↑𝐾) ∈ ℕ → (ϕ‘(𝑃↑𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1})) |
| 6 | 4, 5 | syl 14 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(ϕ‘(𝑃↑𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1})) |
| 7 | | nnm1nn0 9290 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈
ℕ0) |
| 8 | | nnexpcl 10644 |
. . . . . 6
⊢ ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈
ℕ0) → (𝑃↑(𝐾 − 1)) ∈
ℕ) |
| 9 | 1, 7, 8 | syl2an 289 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈
ℕ) |
| 10 | 9 | nncnd 9004 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈
ℂ) |
| 11 | 1 | nncnd 9004 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℂ) |
| 12 | 11 | adantr 276 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈
ℂ) |
| 13 | | ax-1cn 7972 |
. . . . 5
⊢ 1 ∈
ℂ |
| 14 | | subdi 8411 |
. . . . 5
⊢ (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1))) |
| 15 | 13, 14 | mp3an3 1337 |
. . . 4
⊢ (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1))) |
| 16 | 10, 12, 15 | syl2anc 411 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1))) |
| 17 | 10 | mulridd 8043 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 1) = (𝑃↑(𝐾 − 1))) |
| 18 | 17 | oveq2d 5938 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1)))) |
| 19 | | phivalfi 12380 |
. . . . . . 7
⊢ ((𝑃↑𝐾) ∈ ℕ → {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∈ Fin) |
| 20 | 4, 19 | syl 14 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∈ Fin) |
| 21 | | 1zzd 9353 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 1 ∈
ℤ) |
| 22 | | prmz 12279 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 23 | | zexpcl 10646 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ0)
→ (𝑃↑𝐾) ∈
ℤ) |
| 24 | 22, 2, 23 | syl2an 289 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) ∈ ℤ) |
| 25 | 21, 24 | fzfigd 10523 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(1...(𝑃↑𝐾)) ∈ Fin) |
| 26 | 22 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → 𝑃 ∈ ℤ) |
| 27 | | elfzelz 10100 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1...(𝑃↑𝐾)) → 𝑥 ∈ ℤ) |
| 28 | 27 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → 𝑥 ∈ ℤ) |
| 29 | | 0zd 9338 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → 0 ∈
ℤ) |
| 30 | 28, 29 | zsubcld 9453 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → (𝑥 − 0) ∈ ℤ) |
| 31 | | zdvdsdc 11977 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℤ ∧ (𝑥 − 0) ∈ ℤ)
→ DECID 𝑃 ∥ (𝑥 − 0)) |
| 32 | 26, 30, 31 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → DECID 𝑃 ∥ (𝑥 − 0)) |
| 33 | 32 | ralrimiva 2570 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
∀𝑥 ∈
(1...(𝑃↑𝐾))DECID 𝑃 ∥ (𝑥 − 0)) |
| 34 | 25, 33 | ssfirab 6997 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin) |
| 35 | | inrab 3435 |
. . . . . . 7
⊢ ({𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ ((𝑥 gcd (𝑃↑𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} |
| 36 | | rpexp 12321 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃↑𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1)) |
| 37 | 22, 36 | syl3an1 1282 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃↑𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1)) |
| 38 | 37 | 3expa 1205 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (((𝑃↑𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1)) |
| 39 | 38 | an32s 568 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑃↑𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1)) |
| 40 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈
ℤ) |
| 41 | 24 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃↑𝐾) ∈ ℤ) |
| 42 | | gcdcom 12140 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℤ ∧ (𝑃↑𝐾) ∈ ℤ) → (𝑥 gcd (𝑃↑𝐾)) = ((𝑃↑𝐾) gcd 𝑥)) |
| 43 | 40, 41, 42 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd (𝑃↑𝐾)) = ((𝑃↑𝐾) gcd 𝑥)) |
| 44 | 43 | eqeq1d 2205 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃↑𝐾)) = 1 ↔ ((𝑃↑𝐾) gcd 𝑥) = 1)) |
| 45 | | coprm 12312 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) → (¬
𝑃 ∥ 𝑥 ↔ (𝑃 gcd 𝑥) = 1)) |
| 46 | 45 | adantlr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬
𝑃 ∥ 𝑥 ↔ (𝑃 gcd 𝑥) = 1)) |
| 47 | 39, 44, 46 | 3bitr4d 220 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃↑𝐾)) = 1 ↔ ¬ 𝑃 ∥ 𝑥)) |
| 48 | | zcn 9331 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
| 49 | 48 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈
ℂ) |
| 50 | 49 | subid1d 8326 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 − 0) = 𝑥) |
| 51 | 50 | breq2d 4045 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ (𝑥 − 0) ↔ 𝑃 ∥ 𝑥)) |
| 52 | 51 | notbid 668 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬
𝑃 ∥ (𝑥 − 0) ↔ ¬ 𝑃 ∥ 𝑥)) |
| 53 | 47, 52 | bitr4d 191 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃↑𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0))) |
| 54 | 27, 53 | sylan2 286 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → ((𝑥 gcd (𝑃↑𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0))) |
| 55 | 54 | biimpd 144 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → ((𝑥 gcd (𝑃↑𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0))) |
| 56 | | imnan 691 |
. . . . . . . . . 10
⊢ (((𝑥 gcd (𝑃↑𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)) ↔ ¬ ((𝑥 gcd (𝑃↑𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))) |
| 57 | 55, 56 | sylib 122 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → ¬ ((𝑥 gcd (𝑃↑𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))) |
| 58 | 57 | ralrimiva 2570 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
∀𝑥 ∈
(1...(𝑃↑𝐾)) ¬ ((𝑥 gcd (𝑃↑𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))) |
| 59 | | rabeq0 3480 |
. . . . . . . 8
⊢ ({𝑥 ∈ (1...(𝑃↑𝐾)) ∣ ((𝑥 gcd (𝑃↑𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅ ↔ ∀𝑥 ∈ (1...(𝑃↑𝐾)) ¬ ((𝑥 gcd (𝑃↑𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))) |
| 60 | 58, 59 | sylibr 134 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ ((𝑥 gcd (𝑃↑𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅) |
| 61 | 35, 60 | eqtrid 2241 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅) |
| 62 | | hashun 10897 |
. . . . . 6
⊢ (({𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∈ Fin ∧ {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin ∧ ({𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅) →
(♯‘({𝑥 ∈
(1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}))) |
| 63 | 20, 34, 61, 62 | syl3anc 1249 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(♯‘({𝑥 ∈
(1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}))) |
| 64 | | unrab 3434 |
. . . . . . . 8
⊢ ({𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ ((𝑥 gcd (𝑃↑𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))} |
| 65 | 54 | biimprd 158 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → (¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃↑𝐾)) = 1)) |
| 66 | | con1dc 857 |
. . . . . . . . . . . 12
⊢
(DECID 𝑃 ∥ (𝑥 − 0) → ((¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃↑𝐾)) = 1) → (¬ (𝑥 gcd (𝑃↑𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0)))) |
| 67 | 32, 65, 66 | sylc 62 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → (¬ (𝑥 gcd (𝑃↑𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))) |
| 68 | 24 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → (𝑃↑𝐾) ∈ ℤ) |
| 69 | 28, 68 | gcdcld 12135 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → (𝑥 gcd (𝑃↑𝐾)) ∈
ℕ0) |
| 70 | 69 | nn0zd 9446 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → (𝑥 gcd (𝑃↑𝐾)) ∈ ℤ) |
| 71 | | 1zzd 9353 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → 1 ∈
ℤ) |
| 72 | | zdceq 9401 |
. . . . . . . . . . . . 13
⊢ (((𝑥 gcd (𝑃↑𝐾)) ∈ ℤ ∧ 1 ∈ ℤ)
→ DECID (𝑥 gcd (𝑃↑𝐾)) = 1) |
| 73 | 70, 71, 72 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → DECID (𝑥 gcd (𝑃↑𝐾)) = 1) |
| 74 | | dfordc 893 |
. . . . . . . . . . . 12
⊢
(DECID (𝑥 gcd (𝑃↑𝐾)) = 1 → (((𝑥 gcd (𝑃↑𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)) ↔ (¬ (𝑥 gcd (𝑃↑𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0)))) |
| 75 | 73, 74 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → (((𝑥 gcd (𝑃↑𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)) ↔ (¬ (𝑥 gcd (𝑃↑𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0)))) |
| 76 | 67, 75 | mpbird 167 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃↑𝐾))) → ((𝑥 gcd (𝑃↑𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))) |
| 77 | 76 | ralrimiva 2570 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
∀𝑥 ∈
(1...(𝑃↑𝐾))((𝑥 gcd (𝑃↑𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))) |
| 78 | | rabid2 2674 |
. . . . . . . . 9
⊢
((1...(𝑃↑𝐾)) = {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ ((𝑥 gcd (𝑃↑𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))} ↔ ∀𝑥 ∈ (1...(𝑃↑𝐾))((𝑥 gcd (𝑃↑𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))) |
| 79 | 77, 78 | sylibr 134 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(1...(𝑃↑𝐾)) = {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ ((𝑥 gcd (𝑃↑𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))}) |
| 80 | 64, 79 | eqtr4id 2248 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (1...(𝑃↑𝐾))) |
| 81 | 80 | fveq2d 5562 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(♯‘({𝑥 ∈
(1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = (♯‘(1...(𝑃↑𝐾)))) |
| 82 | 4 | nnnn0d 9302 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) ∈
ℕ0) |
| 83 | | hashfz1 10875 |
. . . . . . 7
⊢ ((𝑃↑𝐾) ∈ ℕ0 →
(♯‘(1...(𝑃↑𝐾))) = (𝑃↑𝐾)) |
| 84 | 82, 83 | syl 14 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(♯‘(1...(𝑃↑𝐾))) = (𝑃↑𝐾)) |
| 85 | | expm1t 10659 |
. . . . . . 7
⊢ ((𝑃 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃)) |
| 86 | 11, 85 | sylan 283 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃)) |
| 87 | 81, 84, 86 | 3eqtrd 2233 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(♯‘({𝑥 ∈
(1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) · 𝑃)) |
| 88 | | hashcl 10873 |
. . . . . . . 8
⊢ ({𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1} ∈ Fin →
(♯‘{𝑥 ∈
(1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}) ∈
ℕ0) |
| 89 | 20, 88 | syl 14 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(♯‘{𝑥 ∈
(1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}) ∈
ℕ0) |
| 90 | 89 | nn0cnd 9304 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(♯‘{𝑥 ∈
(1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}) ∈ ℂ) |
| 91 | 1 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈
ℕ) |
| 92 | | nn0uz 9636 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
| 93 | | 1m1e0 9059 |
. . . . . . . . . . . 12
⊢ (1
− 1) = 0 |
| 94 | 93 | fveq2i 5561 |
. . . . . . . . . . 11
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
| 95 | 92, 94 | eqtr4i 2220 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
| 96 | 82, 95 | eleqtrdi 2289 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) ∈ (ℤ≥‘(1
− 1))) |
| 97 | | 0zd 9338 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 0 ∈
ℤ) |
| 98 | 91, 21, 96, 97 | hashdvds 12389 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(♯‘{𝑥 ∈
(1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ((⌊‘(((𝑃↑𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1)
− 0) / 𝑃)))) |
| 99 | 4 | nncnd 9004 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑𝐾) ∈ ℂ) |
| 100 | 99 | subid1d 8326 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑𝐾) − 0) = (𝑃↑𝐾)) |
| 101 | 100 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑𝐾) − 0) / 𝑃) = ((𝑃↑𝐾) / 𝑃)) |
| 102 | 91 | nnap0d 9036 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 # 0) |
| 103 | | nnz 9345 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℤ) |
| 104 | 103 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈
ℤ) |
| 105 | 12, 102, 104 | expm1apd 10775 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) = ((𝑃↑𝐾) / 𝑃)) |
| 106 | 101, 105 | eqtr4d 2232 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑𝐾) − 0) / 𝑃) = (𝑃↑(𝐾 − 1))) |
| 107 | 106 | fveq2d 5562 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(⌊‘(((𝑃↑𝐾) − 0) / 𝑃)) = (⌊‘(𝑃↑(𝐾 − 1)))) |
| 108 | 9 | nnzd 9447 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈
ℤ) |
| 109 | | flid 10374 |
. . . . . . . . . . 11
⊢ ((𝑃↑(𝐾 − 1)) ∈ ℤ →
(⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1))) |
| 110 | 108, 109 | syl 14 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1))) |
| 111 | 107, 110 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(⌊‘(((𝑃↑𝐾) − 0) / 𝑃)) = (𝑃↑(𝐾 − 1))) |
| 112 | 93 | oveq1i 5932 |
. . . . . . . . . . . . . 14
⊢ ((1
− 1) − 0) = (0 − 0) |
| 113 | | 0m0e0 9102 |
. . . . . . . . . . . . . 14
⊢ (0
− 0) = 0 |
| 114 | 112, 113 | eqtri 2217 |
. . . . . . . . . . . . 13
⊢ ((1
− 1) − 0) = 0 |
| 115 | 114 | oveq1i 5932 |
. . . . . . . . . . . 12
⊢ (((1
− 1) − 0) / 𝑃)
= (0 / 𝑃) |
| 116 | 12, 102 | div0apd 8814 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (0 /
𝑃) = 0) |
| 117 | 115, 116 | eqtrid 2241 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((1
− 1) − 0) / 𝑃)
= 0) |
| 118 | 117 | fveq2d 5562 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(⌊‘(((1 − 1) − 0) / 𝑃)) = (⌊‘0)) |
| 119 | | 0z 9337 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
| 120 | | flid 10374 |
. . . . . . . . . . 11
⊢ (0 ∈
ℤ → (⌊‘0) = 0) |
| 121 | 119, 120 | ax-mp 5 |
. . . . . . . . . 10
⊢
(⌊‘0) = 0 |
| 122 | 118, 121 | eqtrdi 2245 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(⌊‘(((1 − 1) − 0) / 𝑃)) = 0) |
| 123 | 111, 122 | oveq12d 5940 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
((⌊‘(((𝑃↑𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1)
− 0) / 𝑃))) = ((𝑃↑(𝐾 − 1)) − 0)) |
| 124 | 10 | subid1d 8326 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) − 0) = (𝑃↑(𝐾 − 1))) |
| 125 | 98, 123, 124 | 3eqtrd 2233 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(♯‘{𝑥 ∈
(1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (𝑃↑(𝐾 − 1))) |
| 126 | 125 | oveq2d 5938 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
((♯‘{𝑥 ∈
(1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}) + (𝑃↑(𝐾 − 1)))) |
| 127 | 90, 10, 126 | comraddd 8183 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
((♯‘{𝑥 ∈
(1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}))) |
| 128 | 63, 87, 127 | 3eqtr3rd 2238 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃)) |
| 129 | 10, 12 | mulcld 8047 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 𝑃) ∈ ℂ) |
| 130 | 129, 10, 90 | subaddd 8355 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
((((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}) ↔ ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃))) |
| 131 | 128, 130 | mpbird 167 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1})) |
| 132 | 16, 18, 131 | 3eqtrrd 2234 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(♯‘{𝑥 ∈
(1...(𝑃↑𝐾)) ∣ (𝑥 gcd (𝑃↑𝐾)) = 1}) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1))) |
| 133 | 6, 132 | eqtrd 2229 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(ϕ‘(𝑃↑𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1))) |