ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phiprmpw GIF version

Theorem phiprmpw 12390
Description: Value of the Euler ϕ function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
phiprmpw ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))

Proof of Theorem phiprmpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmnn 12278 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 9256 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 nnexpcl 10644 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℕ)
41, 2, 3syl2an 289 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ)
5 phival 12381 . . 3 ((𝑃𝐾) ∈ ℕ → (ϕ‘(𝑃𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
64, 5syl 14 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
7 nnm1nn0 9290 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
8 nnexpcl 10644 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℕ0) → (𝑃↑(𝐾 − 1)) ∈ ℕ)
91, 7, 8syl2an 289 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℕ)
109nncnd 9004 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℂ)
111nncnd 9004 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
1211adantr 276 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℂ)
13 ax-1cn 7972 . . . . 5 1 ∈ ℂ
14 subdi 8411 . . . . 5 (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1513, 14mp3an3 1337 . . . 4 (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1610, 12, 15syl2anc 411 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1710mulridd 8043 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 1) = (𝑃↑(𝐾 − 1)))
1817oveq2d 5938 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))))
19 phivalfi 12380 . . . . . . 7 ((𝑃𝐾) ∈ ℕ → {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin)
204, 19syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin)
21 1zzd 9353 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 1 ∈ ℤ)
22 prmz 12279 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
23 zexpcl 10646 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℤ)
2422, 2, 23syl2an 289 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℤ)
2521, 24fzfigd 10523 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (1...(𝑃𝐾)) ∈ Fin)
2622ad2antrr 488 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 𝑃 ∈ ℤ)
27 elfzelz 10100 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑃𝐾)) → 𝑥 ∈ ℤ)
2827adantl 277 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 𝑥 ∈ ℤ)
29 0zd 9338 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 0 ∈ ℤ)
3028, 29zsubcld 9453 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 − 0) ∈ ℤ)
31 zdvdsdc 11977 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝑥 − 0) ∈ ℤ) → DECID 𝑃 ∥ (𝑥 − 0))
3226, 30, 31syl2anc 411 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → DECID 𝑃 ∥ (𝑥 − 0))
3332ralrimiva 2570 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾))DECID 𝑃 ∥ (𝑥 − 0))
3425, 33ssfirab 6997 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin)
35 inrab 3435 . . . . . . 7 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))}
36 rpexp 12321 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
3722, 36syl3an1 1282 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
38373expa 1205 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
3938an32s 568 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
40 simpr 110 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
4124adantr 276 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃𝐾) ∈ ℤ)
42 gcdcom 12140 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑃𝐾) ∈ ℤ) → (𝑥 gcd (𝑃𝐾)) = ((𝑃𝐾) gcd 𝑥))
4340, 41, 42syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd (𝑃𝐾)) = ((𝑃𝐾) gcd 𝑥))
4443eqeq1d 2205 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ((𝑃𝐾) gcd 𝑥) = 1))
45 coprm 12312 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
4645adantlr 477 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
4739, 44, 463bitr4d 220 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃𝑥))
48 zcn 9331 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
4948adantl 277 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
5049subid1d 8326 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 − 0) = 𝑥)
5150breq2d 4045 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ (𝑥 − 0) ↔ 𝑃𝑥))
5251notbid 668 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬ 𝑃 ∥ (𝑥 − 0) ↔ ¬ 𝑃𝑥))
5347, 52bitr4d 191 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0)))
5427, 53sylan2 286 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0)))
5554biimpd 144 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)))
56 imnan 691 . . . . . . . . . 10 (((𝑥 gcd (𝑃𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)) ↔ ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5755, 56sylib 122 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5857ralrimiva 2570 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾)) ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
59 rabeq0 3480 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅ ↔ ∀𝑥 ∈ (1...(𝑃𝐾)) ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
6058, 59sylibr 134 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅)
6135, 60eqtrid 2241 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅)
62 hashun 10897 . . . . . 6 (({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin ∧ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin ∧ ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})))
6320, 34, 61, 62syl3anc 1249 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})))
64 unrab 3434 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))}
6554biimprd 158 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃𝐾)) = 1))
66 con1dc 857 . . . . . . . . . . . 12 (DECID 𝑃 ∥ (𝑥 − 0) → ((¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃𝐾)) = 1) → (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
6732, 65, 66sylc 62 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0)))
6824adantr 276 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑃𝐾) ∈ ℤ)
6928, 68gcdcld 12135 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 gcd (𝑃𝐾)) ∈ ℕ0)
7069nn0zd 9446 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 gcd (𝑃𝐾)) ∈ ℤ)
71 1zzd 9353 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 1 ∈ ℤ)
72 zdceq 9401 . . . . . . . . . . . . 13 (((𝑥 gcd (𝑃𝐾)) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑥 gcd (𝑃𝐾)) = 1)
7370, 71, 72syl2anc 411 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → DECID (𝑥 gcd (𝑃𝐾)) = 1)
74 dfordc 893 . . . . . . . . . . . 12 (DECID (𝑥 gcd (𝑃𝐾)) = 1 → (((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)) ↔ (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
7573, 74syl 14 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)) ↔ (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
7667, 75mpbird 167 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
7776ralrimiva 2570 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾))((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
78 rabid2 2674 . . . . . . . . 9 ((1...(𝑃𝐾)) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))} ↔ ∀𝑥 ∈ (1...(𝑃𝐾))((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
7977, 78sylibr 134 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (1...(𝑃𝐾)) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))})
8064, 79eqtr4id 2248 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (1...(𝑃𝐾)))
8180fveq2d 5562 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = (♯‘(1...(𝑃𝐾))))
824nnnn0d 9302 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ0)
83 hashfz1 10875 . . . . . . 7 ((𝑃𝐾) ∈ ℕ0 → (♯‘(1...(𝑃𝐾))) = (𝑃𝐾))
8482, 83syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘(1...(𝑃𝐾))) = (𝑃𝐾))
85 expm1t 10659 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃))
8611, 85sylan 283 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃))
8781, 84, 863eqtrd 2233 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) · 𝑃))
88 hashcl 10873 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℕ0)
8920, 88syl 14 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℕ0)
9089nn0cnd 9304 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℂ)
911adantr 276 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℕ)
92 nn0uz 9636 . . . . . . . . . . 11 0 = (ℤ‘0)
93 1m1e0 9059 . . . . . . . . . . . 12 (1 − 1) = 0
9493fveq2i 5561 . . . . . . . . . . 11 (ℤ‘(1 − 1)) = (ℤ‘0)
9592, 94eqtr4i 2220 . . . . . . . . . 10 0 = (ℤ‘(1 − 1))
9682, 95eleqtrdi 2289 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ (ℤ‘(1 − 1)))
97 0zd 9338 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 0 ∈ ℤ)
9891, 21, 96, 97hashdvds 12389 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ((⌊‘(((𝑃𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1) − 0) / 𝑃))))
994nncnd 9004 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℂ)
10099subid1d 8326 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃𝐾) − 0) = (𝑃𝐾))
101100oveq1d 5937 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) − 0) / 𝑃) = ((𝑃𝐾) / 𝑃))
10291nnap0d 9036 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 # 0)
103 nnz 9345 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
104103adantl 277 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
10512, 102, 104expm1apd 10775 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) = ((𝑃𝐾) / 𝑃))
106101, 105eqtr4d 2232 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) − 0) / 𝑃) = (𝑃↑(𝐾 − 1)))
107106fveq2d 5562 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝑃𝐾) − 0) / 𝑃)) = (⌊‘(𝑃↑(𝐾 − 1))))
1089nnzd 9447 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℤ)
109 flid 10374 . . . . . . . . . . 11 ((𝑃↑(𝐾 − 1)) ∈ ℤ → (⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1)))
110108, 109syl 14 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1)))
111107, 110eqtrd 2229 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝑃𝐾) − 0) / 𝑃)) = (𝑃↑(𝐾 − 1)))
11293oveq1i 5932 . . . . . . . . . . . . . 14 ((1 − 1) − 0) = (0 − 0)
113 0m0e0 9102 . . . . . . . . . . . . . 14 (0 − 0) = 0
114112, 113eqtri 2217 . . . . . . . . . . . . 13 ((1 − 1) − 0) = 0
115114oveq1i 5932 . . . . . . . . . . . 12 (((1 − 1) − 0) / 𝑃) = (0 / 𝑃)
11612, 102div0apd 8814 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (0 / 𝑃) = 0)
117115, 116eqtrid 2241 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((1 − 1) − 0) / 𝑃) = 0)
118117fveq2d 5562 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((1 − 1) − 0) / 𝑃)) = (⌊‘0))
119 0z 9337 . . . . . . . . . . 11 0 ∈ ℤ
120 flid 10374 . . . . . . . . . . 11 (0 ∈ ℤ → (⌊‘0) = 0)
121119, 120ax-mp 5 . . . . . . . . . 10 (⌊‘0) = 0
122118, 121eqtrdi 2245 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((1 − 1) − 0) / 𝑃)) = 0)
123111, 122oveq12d 5940 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((⌊‘(((𝑃𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1) − 0) / 𝑃))) = ((𝑃↑(𝐾 − 1)) − 0))
12410subid1d 8326 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) − 0) = (𝑃↑(𝐾 − 1)))
12598, 123, 1243eqtrd 2233 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (𝑃↑(𝐾 − 1)))
126125oveq2d 5938 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (𝑃↑(𝐾 − 1))))
12790, 10, 126comraddd 8183 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})))
12863, 87, 1273eqtr3rd 2238 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃))
12910, 12mulcld 8047 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 𝑃) ∈ ℂ)
130129, 10, 90subaddd 8355 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ↔ ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃)))
131128, 130mpbird 167 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
13216, 18, 1313eqtrrd 2234 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
1336, 132eqtrd 2229 1 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  {crab 2479  cun 3155  cin 3156  c0 3450   class class class wbr 4033  cfv 5258  (class class class)co 5922  Fincfn 6799  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  cmin 8197   / cdiv 8699  cn 8990  0cn0 9249  cz 9326  cuz 9601  ...cfz 10083  cfl 10358  cexp 10630  chash 10867  cdvds 11952   gcd cgcd 12120  cprime 12275  ϕcphi 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-prm 12276  df-phi 12379
This theorem is referenced by:  phiprm  12391
  Copyright terms: Public domain W3C validator