ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phiprmpw GIF version

Theorem phiprmpw 12710
Description: Value of the Euler ϕ function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
phiprmpw ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))

Proof of Theorem phiprmpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmnn 12598 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 9344 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 nnexpcl 10741 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℕ)
41, 2, 3syl2an 289 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ)
5 phival 12701 . . 3 ((𝑃𝐾) ∈ ℕ → (ϕ‘(𝑃𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
64, 5syl 14 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
7 nnm1nn0 9378 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
8 nnexpcl 10741 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℕ0) → (𝑃↑(𝐾 − 1)) ∈ ℕ)
91, 7, 8syl2an 289 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℕ)
109nncnd 9092 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℂ)
111nncnd 9092 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
1211adantr 276 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℂ)
13 ax-1cn 8060 . . . . 5 1 ∈ ℂ
14 subdi 8499 . . . . 5 (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1513, 14mp3an3 1341 . . . 4 (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1610, 12, 15syl2anc 411 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1710mulridd 8131 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 1) = (𝑃↑(𝐾 − 1)))
1817oveq2d 5990 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))))
19 phivalfi 12700 . . . . . . 7 ((𝑃𝐾) ∈ ℕ → {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin)
204, 19syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin)
21 1zzd 9441 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 1 ∈ ℤ)
22 prmz 12599 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
23 zexpcl 10743 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℤ)
2422, 2, 23syl2an 289 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℤ)
2521, 24fzfigd 10620 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (1...(𝑃𝐾)) ∈ Fin)
2622ad2antrr 488 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 𝑃 ∈ ℤ)
27 elfzelz 10189 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑃𝐾)) → 𝑥 ∈ ℤ)
2827adantl 277 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 𝑥 ∈ ℤ)
29 0zd 9426 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 0 ∈ ℤ)
3028, 29zsubcld 9542 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 − 0) ∈ ℤ)
31 zdvdsdc 12289 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝑥 − 0) ∈ ℤ) → DECID 𝑃 ∥ (𝑥 − 0))
3226, 30, 31syl2anc 411 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → DECID 𝑃 ∥ (𝑥 − 0))
3332ralrimiva 2583 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾))DECID 𝑃 ∥ (𝑥 − 0))
3425, 33ssfirab 7066 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin)
35 inrab 3456 . . . . . . 7 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))}
36 rpexp 12641 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
3722, 36syl3an1 1285 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
38373expa 1208 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
3938an32s 568 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
40 simpr 110 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
4124adantr 276 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃𝐾) ∈ ℤ)
42 gcdcom 12460 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑃𝐾) ∈ ℤ) → (𝑥 gcd (𝑃𝐾)) = ((𝑃𝐾) gcd 𝑥))
4340, 41, 42syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd (𝑃𝐾)) = ((𝑃𝐾) gcd 𝑥))
4443eqeq1d 2218 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ((𝑃𝐾) gcd 𝑥) = 1))
45 coprm 12632 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
4645adantlr 477 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
4739, 44, 463bitr4d 220 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃𝑥))
48 zcn 9419 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
4948adantl 277 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
5049subid1d 8414 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 − 0) = 𝑥)
5150breq2d 4074 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ (𝑥 − 0) ↔ 𝑃𝑥))
5251notbid 671 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬ 𝑃 ∥ (𝑥 − 0) ↔ ¬ 𝑃𝑥))
5347, 52bitr4d 191 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0)))
5427, 53sylan2 286 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0)))
5554biimpd 144 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)))
56 imnan 694 . . . . . . . . . 10 (((𝑥 gcd (𝑃𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)) ↔ ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5755, 56sylib 122 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5857ralrimiva 2583 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾)) ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
59 rabeq0 3501 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅ ↔ ∀𝑥 ∈ (1...(𝑃𝐾)) ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
6058, 59sylibr 134 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅)
6135, 60eqtrid 2254 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅)
62 hashun 10994 . . . . . 6 (({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin ∧ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin ∧ ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})))
6320, 34, 61, 62syl3anc 1252 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})))
64 unrab 3455 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))}
6554biimprd 158 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃𝐾)) = 1))
66 con1dc 860 . . . . . . . . . . . 12 (DECID 𝑃 ∥ (𝑥 − 0) → ((¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃𝐾)) = 1) → (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
6732, 65, 66sylc 62 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0)))
6824adantr 276 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑃𝐾) ∈ ℤ)
6928, 68gcdcld 12455 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 gcd (𝑃𝐾)) ∈ ℕ0)
7069nn0zd 9535 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 gcd (𝑃𝐾)) ∈ ℤ)
71 1zzd 9441 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 1 ∈ ℤ)
72 zdceq 9490 . . . . . . . . . . . . 13 (((𝑥 gcd (𝑃𝐾)) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑥 gcd (𝑃𝐾)) = 1)
7370, 71, 72syl2anc 411 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → DECID (𝑥 gcd (𝑃𝐾)) = 1)
74 dfordc 896 . . . . . . . . . . . 12 (DECID (𝑥 gcd (𝑃𝐾)) = 1 → (((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)) ↔ (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
7573, 74syl 14 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)) ↔ (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
7667, 75mpbird 167 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
7776ralrimiva 2583 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾))((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
78 rabid2 2688 . . . . . . . . 9 ((1...(𝑃𝐾)) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))} ↔ ∀𝑥 ∈ (1...(𝑃𝐾))((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
7977, 78sylibr 134 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (1...(𝑃𝐾)) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))})
8064, 79eqtr4id 2261 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (1...(𝑃𝐾)))
8180fveq2d 5607 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = (♯‘(1...(𝑃𝐾))))
824nnnn0d 9390 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ0)
83 hashfz1 10972 . . . . . . 7 ((𝑃𝐾) ∈ ℕ0 → (♯‘(1...(𝑃𝐾))) = (𝑃𝐾))
8482, 83syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘(1...(𝑃𝐾))) = (𝑃𝐾))
85 expm1t 10756 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃))
8611, 85sylan 283 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃))
8781, 84, 863eqtrd 2246 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) · 𝑃))
88 hashcl 10970 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℕ0)
8920, 88syl 14 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℕ0)
9089nn0cnd 9392 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℂ)
911adantr 276 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℕ)
92 nn0uz 9725 . . . . . . . . . . 11 0 = (ℤ‘0)
93 1m1e0 9147 . . . . . . . . . . . 12 (1 − 1) = 0
9493fveq2i 5606 . . . . . . . . . . 11 (ℤ‘(1 − 1)) = (ℤ‘0)
9592, 94eqtr4i 2233 . . . . . . . . . 10 0 = (ℤ‘(1 − 1))
9682, 95eleqtrdi 2302 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ (ℤ‘(1 − 1)))
97 0zd 9426 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 0 ∈ ℤ)
9891, 21, 96, 97hashdvds 12709 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ((⌊‘(((𝑃𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1) − 0) / 𝑃))))
994nncnd 9092 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℂ)
10099subid1d 8414 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃𝐾) − 0) = (𝑃𝐾))
101100oveq1d 5989 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) − 0) / 𝑃) = ((𝑃𝐾) / 𝑃))
10291nnap0d 9124 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 # 0)
103 nnz 9433 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
104103adantl 277 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
10512, 102, 104expm1apd 10872 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) = ((𝑃𝐾) / 𝑃))
106101, 105eqtr4d 2245 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) − 0) / 𝑃) = (𝑃↑(𝐾 − 1)))
107106fveq2d 5607 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝑃𝐾) − 0) / 𝑃)) = (⌊‘(𝑃↑(𝐾 − 1))))
1089nnzd 9536 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℤ)
109 flid 10471 . . . . . . . . . . 11 ((𝑃↑(𝐾 − 1)) ∈ ℤ → (⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1)))
110108, 109syl 14 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1)))
111107, 110eqtrd 2242 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝑃𝐾) − 0) / 𝑃)) = (𝑃↑(𝐾 − 1)))
11293oveq1i 5984 . . . . . . . . . . . . . 14 ((1 − 1) − 0) = (0 − 0)
113 0m0e0 9190 . . . . . . . . . . . . . 14 (0 − 0) = 0
114112, 113eqtri 2230 . . . . . . . . . . . . 13 ((1 − 1) − 0) = 0
115114oveq1i 5984 . . . . . . . . . . . 12 (((1 − 1) − 0) / 𝑃) = (0 / 𝑃)
11612, 102div0apd 8902 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (0 / 𝑃) = 0)
117115, 116eqtrid 2254 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((1 − 1) − 0) / 𝑃) = 0)
118117fveq2d 5607 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((1 − 1) − 0) / 𝑃)) = (⌊‘0))
119 0z 9425 . . . . . . . . . . 11 0 ∈ ℤ
120 flid 10471 . . . . . . . . . . 11 (0 ∈ ℤ → (⌊‘0) = 0)
121119, 120ax-mp 5 . . . . . . . . . 10 (⌊‘0) = 0
122118, 121eqtrdi 2258 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((1 − 1) − 0) / 𝑃)) = 0)
123111, 122oveq12d 5992 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((⌊‘(((𝑃𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1) − 0) / 𝑃))) = ((𝑃↑(𝐾 − 1)) − 0))
12410subid1d 8414 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) − 0) = (𝑃↑(𝐾 − 1)))
12598, 123, 1243eqtrd 2246 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (𝑃↑(𝐾 − 1)))
126125oveq2d 5990 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (𝑃↑(𝐾 − 1))))
12790, 10, 126comraddd 8271 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})))
12863, 87, 1273eqtr3rd 2251 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃))
12910, 12mulcld 8135 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 𝑃) ∈ ℂ)
130129, 10, 90subaddd 8443 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ↔ ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃)))
131128, 130mpbird 167 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
13216, 18, 1313eqtrrd 2247 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
1336, 132eqtrd 2242 1 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  DECID wdc 838   = wceq 1375  wcel 2180  wral 2488  {crab 2492  cun 3175  cin 3176  c0 3471   class class class wbr 4062  cfv 5294  (class class class)co 5974  Fincfn 6857  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  cmin 8285   / cdiv 8787  cn 9078  0cn0 9337  cz 9414  cuz 9690  ...cfz 10172  cfl 10455  cexp 10727  chash 10964  cdvds 12264   gcd cgcd 12440  cprime 12595  ϕcphi 12697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699
This theorem is referenced by:  phiprm  12711
  Copyright terms: Public domain W3C validator