ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phiprmpw GIF version

Theorem phiprmpw 12131
Description: Value of the Euler ϕ function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
phiprmpw ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))

Proof of Theorem phiprmpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmnn 12021 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 9112 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 nnexpcl 10458 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℕ)
41, 2, 3syl2an 287 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ)
5 phival 12122 . . 3 ((𝑃𝐾) ∈ ℕ → (ϕ‘(𝑃𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
64, 5syl 14 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
7 nnm1nn0 9146 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
8 nnexpcl 10458 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℕ0) → (𝑃↑(𝐾 − 1)) ∈ ℕ)
91, 7, 8syl2an 287 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℕ)
109nncnd 8862 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℂ)
111nncnd 8862 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
1211adantr 274 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℂ)
13 ax-1cn 7837 . . . . 5 1 ∈ ℂ
14 subdi 8274 . . . . 5 (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1513, 14mp3an3 1315 . . . 4 (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1610, 12, 15syl2anc 409 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1710mulid1d 7907 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 1) = (𝑃↑(𝐾 − 1)))
1817oveq2d 5852 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))))
19 phivalfi 12121 . . . . . . 7 ((𝑃𝐾) ∈ ℕ → {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin)
204, 19syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin)
21 1zzd 9209 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 1 ∈ ℤ)
22 prmz 12022 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
23 zexpcl 10460 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℤ)
2422, 2, 23syl2an 287 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℤ)
2521, 24fzfigd 10356 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (1...(𝑃𝐾)) ∈ Fin)
2622ad2antrr 480 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 𝑃 ∈ ℤ)
27 elfzelz 9951 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑃𝐾)) → 𝑥 ∈ ℤ)
2827adantl 275 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 𝑥 ∈ ℤ)
29 0zd 9194 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 0 ∈ ℤ)
3028, 29zsubcld 9309 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 − 0) ∈ ℤ)
31 zdvdsdc 11738 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝑥 − 0) ∈ ℤ) → DECID 𝑃 ∥ (𝑥 − 0))
3226, 30, 31syl2anc 409 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → DECID 𝑃 ∥ (𝑥 − 0))
3332ralrimiva 2537 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾))DECID 𝑃 ∥ (𝑥 − 0))
3425, 33ssfirab 6890 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin)
35 inrab 3389 . . . . . . 7 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))}
36 rpexp 12062 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
3722, 36syl3an1 1260 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
38373expa 1192 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
3938an32s 558 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
40 simpr 109 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
4124adantr 274 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃𝐾) ∈ ℤ)
42 gcdcom 11891 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑃𝐾) ∈ ℤ) → (𝑥 gcd (𝑃𝐾)) = ((𝑃𝐾) gcd 𝑥))
4340, 41, 42syl2anc 409 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd (𝑃𝐾)) = ((𝑃𝐾) gcd 𝑥))
4443eqeq1d 2173 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ((𝑃𝐾) gcd 𝑥) = 1))
45 coprm 12053 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
4645adantlr 469 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
4739, 44, 463bitr4d 219 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃𝑥))
48 zcn 9187 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
4948adantl 275 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
5049subid1d 8189 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 − 0) = 𝑥)
5150breq2d 3988 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ (𝑥 − 0) ↔ 𝑃𝑥))
5251notbid 657 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬ 𝑃 ∥ (𝑥 − 0) ↔ ¬ 𝑃𝑥))
5347, 52bitr4d 190 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0)))
5427, 53sylan2 284 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0)))
5554biimpd 143 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)))
56 imnan 680 . . . . . . . . . 10 (((𝑥 gcd (𝑃𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)) ↔ ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5755, 56sylib 121 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5857ralrimiva 2537 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾)) ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
59 rabeq0 3433 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅ ↔ ∀𝑥 ∈ (1...(𝑃𝐾)) ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
6058, 59sylibr 133 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅)
6135, 60syl5eq 2209 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅)
62 hashun 10707 . . . . . 6 (({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin ∧ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin ∧ ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})))
6320, 34, 61, 62syl3anc 1227 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})))
64 unrab 3388 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))}
6554biimprd 157 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃𝐾)) = 1))
66 con1dc 846 . . . . . . . . . . . 12 (DECID 𝑃 ∥ (𝑥 − 0) → ((¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃𝐾)) = 1) → (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
6732, 65, 66sylc 62 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0)))
6824adantr 274 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑃𝐾) ∈ ℤ)
6928, 68gcdcld 11886 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 gcd (𝑃𝐾)) ∈ ℕ0)
7069nn0zd 9302 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 gcd (𝑃𝐾)) ∈ ℤ)
71 1zzd 9209 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 1 ∈ ℤ)
72 zdceq 9257 . . . . . . . . . . . . 13 (((𝑥 gcd (𝑃𝐾)) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑥 gcd (𝑃𝐾)) = 1)
7370, 71, 72syl2anc 409 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → DECID (𝑥 gcd (𝑃𝐾)) = 1)
74 dfordc 882 . . . . . . . . . . . 12 (DECID (𝑥 gcd (𝑃𝐾)) = 1 → (((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)) ↔ (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
7573, 74syl 14 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)) ↔ (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
7667, 75mpbird 166 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
7776ralrimiva 2537 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾))((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
78 rabid2 2640 . . . . . . . . 9 ((1...(𝑃𝐾)) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))} ↔ ∀𝑥 ∈ (1...(𝑃𝐾))((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
7977, 78sylibr 133 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (1...(𝑃𝐾)) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))})
8064, 79eqtr4id 2216 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (1...(𝑃𝐾)))
8180fveq2d 5484 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = (♯‘(1...(𝑃𝐾))))
824nnnn0d 9158 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ0)
83 hashfz1 10685 . . . . . . 7 ((𝑃𝐾) ∈ ℕ0 → (♯‘(1...(𝑃𝐾))) = (𝑃𝐾))
8482, 83syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘(1...(𝑃𝐾))) = (𝑃𝐾))
85 expm1t 10473 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃))
8611, 85sylan 281 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃))
8781, 84, 863eqtrd 2201 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) · 𝑃))
88 hashcl 10683 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℕ0)
8920, 88syl 14 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℕ0)
9089nn0cnd 9160 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℂ)
911adantr 274 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℕ)
92 nn0uz 9491 . . . . . . . . . . 11 0 = (ℤ‘0)
93 1m1e0 8917 . . . . . . . . . . . 12 (1 − 1) = 0
9493fveq2i 5483 . . . . . . . . . . 11 (ℤ‘(1 − 1)) = (ℤ‘0)
9592, 94eqtr4i 2188 . . . . . . . . . 10 0 = (ℤ‘(1 − 1))
9682, 95eleqtrdi 2257 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ (ℤ‘(1 − 1)))
97 0zd 9194 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 0 ∈ ℤ)
9891, 21, 96, 97hashdvds 12130 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ((⌊‘(((𝑃𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1) − 0) / 𝑃))))
994nncnd 8862 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℂ)
10099subid1d 8189 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃𝐾) − 0) = (𝑃𝐾))
101100oveq1d 5851 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) − 0) / 𝑃) = ((𝑃𝐾) / 𝑃))
10291nnap0d 8894 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 # 0)
103 nnz 9201 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
104103adantl 275 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
10512, 102, 104expm1apd 10587 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) = ((𝑃𝐾) / 𝑃))
106101, 105eqtr4d 2200 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) − 0) / 𝑃) = (𝑃↑(𝐾 − 1)))
107106fveq2d 5484 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝑃𝐾) − 0) / 𝑃)) = (⌊‘(𝑃↑(𝐾 − 1))))
1089nnzd 9303 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℤ)
109 flid 10209 . . . . . . . . . . 11 ((𝑃↑(𝐾 − 1)) ∈ ℤ → (⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1)))
110108, 109syl 14 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1)))
111107, 110eqtrd 2197 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝑃𝐾) − 0) / 𝑃)) = (𝑃↑(𝐾 − 1)))
11293oveq1i 5846 . . . . . . . . . . . . . 14 ((1 − 1) − 0) = (0 − 0)
113 0m0e0 8960 . . . . . . . . . . . . . 14 (0 − 0) = 0
114112, 113eqtri 2185 . . . . . . . . . . . . 13 ((1 − 1) − 0) = 0
115114oveq1i 5846 . . . . . . . . . . . 12 (((1 − 1) − 0) / 𝑃) = (0 / 𝑃)
11612, 102div0apd 8674 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (0 / 𝑃) = 0)
117115, 116syl5eq 2209 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((1 − 1) − 0) / 𝑃) = 0)
118117fveq2d 5484 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((1 − 1) − 0) / 𝑃)) = (⌊‘0))
119 0z 9193 . . . . . . . . . . 11 0 ∈ ℤ
120 flid 10209 . . . . . . . . . . 11 (0 ∈ ℤ → (⌊‘0) = 0)
121119, 120ax-mp 5 . . . . . . . . . 10 (⌊‘0) = 0
122118, 121eqtrdi 2213 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((1 − 1) − 0) / 𝑃)) = 0)
123111, 122oveq12d 5854 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((⌊‘(((𝑃𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1) − 0) / 𝑃))) = ((𝑃↑(𝐾 − 1)) − 0))
12410subid1d 8189 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) − 0) = (𝑃↑(𝐾 − 1)))
12598, 123, 1243eqtrd 2201 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (𝑃↑(𝐾 − 1)))
126125oveq2d 5852 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (𝑃↑(𝐾 − 1))))
12790, 10, 126comraddd 8046 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})))
12863, 87, 1273eqtr3rd 2206 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃))
12910, 12mulcld 7910 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 𝑃) ∈ ℂ)
130129, 10, 90subaddd 8218 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ↔ ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃)))
131128, 130mpbird 166 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
13216, 18, 1313eqtrrd 2202 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
1336, 132eqtrd 2197 1 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1342  wcel 2135  wral 2442  {crab 2446  cun 3109  cin 3110  c0 3404   class class class wbr 3976  cfv 5182  (class class class)co 5836  Fincfn 6697  cc 7742  0cc0 7744  1c1 7745   + caddc 7747   · cmul 7749  cmin 8060   / cdiv 8559  cn 8848  0cn0 9105  cz 9182  cuz 9457  ...cfz 9935  cfl 10193  cexp 10444  chash 10677  cdvds 11713   gcd cgcd 11860  cprime 12018  ϕcphi 12118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-frec 6350  df-1o 6375  df-2o 6376  df-oadd 6379  df-er 6492  df-en 6698  df-dom 6699  df-fin 6700  df-sup 6940  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-ihash 10678  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-dvds 11714  df-gcd 11861  df-prm 12019  df-phi 12120
This theorem is referenced by:  phiprm  12132
  Copyright terms: Public domain W3C validator