ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phiprmpw GIF version

Theorem phiprmpw 12205
Description: Value of the Euler ϕ function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
phiprmpw ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))

Proof of Theorem phiprmpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmnn 12093 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 9172 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 nnexpcl 10519 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℕ)
41, 2, 3syl2an 289 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ)
5 phival 12196 . . 3 ((𝑃𝐾) ∈ ℕ → (ϕ‘(𝑃𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
64, 5syl 14 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
7 nnm1nn0 9206 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
8 nnexpcl 10519 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℕ0) → (𝑃↑(𝐾 − 1)) ∈ ℕ)
91, 7, 8syl2an 289 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℕ)
109nncnd 8922 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℂ)
111nncnd 8922 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
1211adantr 276 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℂ)
13 ax-1cn 7895 . . . . 5 1 ∈ ℂ
14 subdi 8332 . . . . 5 (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1513, 14mp3an3 1326 . . . 4 (((𝑃↑(𝐾 − 1)) ∈ ℂ ∧ 𝑃 ∈ ℂ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1610, 12, 15syl2anc 411 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)))
1710mulid1d 7965 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 1) = (𝑃↑(𝐾 − 1)))
1817oveq2d 5885 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − ((𝑃↑(𝐾 − 1)) · 1)) = (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))))
19 phivalfi 12195 . . . . . . 7 ((𝑃𝐾) ∈ ℕ → {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin)
204, 19syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin)
21 1zzd 9269 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 1 ∈ ℤ)
22 prmz 12094 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
23 zexpcl 10521 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝑃𝐾) ∈ ℤ)
2422, 2, 23syl2an 289 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℤ)
2521, 24fzfigd 10417 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (1...(𝑃𝐾)) ∈ Fin)
2622ad2antrr 488 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 𝑃 ∈ ℤ)
27 elfzelz 10011 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑃𝐾)) → 𝑥 ∈ ℤ)
2827adantl 277 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 𝑥 ∈ ℤ)
29 0zd 9254 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 0 ∈ ℤ)
3028, 29zsubcld 9369 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 − 0) ∈ ℤ)
31 zdvdsdc 11803 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝑥 − 0) ∈ ℤ) → DECID 𝑃 ∥ (𝑥 − 0))
3226, 30, 31syl2anc 411 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → DECID 𝑃 ∥ (𝑥 − 0))
3332ralrimiva 2550 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾))DECID 𝑃 ∥ (𝑥 − 0))
3425, 33ssfirab 6927 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin)
35 inrab 3407 . . . . . . 7 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))}
36 rpexp 12136 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
3722, 36syl3an1 1271 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
38373expa 1203 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
3938an32s 568 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑃𝐾) gcd 𝑥) = 1 ↔ (𝑃 gcd 𝑥) = 1))
40 simpr 110 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
4124adantr 276 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃𝐾) ∈ ℤ)
42 gcdcom 11957 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑃𝐾) ∈ ℤ) → (𝑥 gcd (𝑃𝐾)) = ((𝑃𝐾) gcd 𝑥))
4340, 41, 42syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd (𝑃𝐾)) = ((𝑃𝐾) gcd 𝑥))
4443eqeq1d 2186 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ((𝑃𝐾) gcd 𝑥) = 1))
45 coprm 12127 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
4645adantlr 477 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
4739, 44, 463bitr4d 220 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃𝑥))
48 zcn 9247 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
4948adantl 277 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
5049subid1d 8247 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 − 0) = 𝑥)
5150breq2d 4012 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ (𝑥 − 0) ↔ 𝑃𝑥))
5251notbid 667 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (¬ 𝑃 ∥ (𝑥 − 0) ↔ ¬ 𝑃𝑥))
5347, 52bitr4d 191 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0)))
5427, 53sylan2 286 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 ↔ ¬ 𝑃 ∥ (𝑥 − 0)))
5554biimpd 144 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)))
56 imnan 690 . . . . . . . . . 10 (((𝑥 gcd (𝑃𝐾)) = 1 → ¬ 𝑃 ∥ (𝑥 − 0)) ↔ ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5755, 56sylib 122 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
5857ralrimiva 2550 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾)) ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
59 rabeq0 3452 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅ ↔ ∀𝑥 ∈ (1...(𝑃𝐾)) ¬ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0)))
6058, 59sylibr 134 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∧ 𝑃 ∥ (𝑥 − 0))} = ∅)
6135, 60eqtrid 2222 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅)
62 hashun 10769 . . . . . 6 (({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin ∧ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)} ∈ Fin ∧ ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∩ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ∅) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})))
6320, 34, 61, 62syl3anc 1238 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})))
64 unrab 3406 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))}
6554biimprd 158 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃𝐾)) = 1))
66 con1dc 856 . . . . . . . . . . . 12 (DECID 𝑃 ∥ (𝑥 − 0) → ((¬ 𝑃 ∥ (𝑥 − 0) → (𝑥 gcd (𝑃𝐾)) = 1) → (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
6732, 65, 66sylc 62 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0)))
6824adantr 276 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑃𝐾) ∈ ℤ)
6928, 68gcdcld 11952 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 gcd (𝑃𝐾)) ∈ ℕ0)
7069nn0zd 9362 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (𝑥 gcd (𝑃𝐾)) ∈ ℤ)
71 1zzd 9269 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → 1 ∈ ℤ)
72 zdceq 9317 . . . . . . . . . . . . 13 (((𝑥 gcd (𝑃𝐾)) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑥 gcd (𝑃𝐾)) = 1)
7370, 71, 72syl2anc 411 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → DECID (𝑥 gcd (𝑃𝐾)) = 1)
74 dfordc 892 . . . . . . . . . . . 12 (DECID (𝑥 gcd (𝑃𝐾)) = 1 → (((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)) ↔ (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
7573, 74syl 14 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → (((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)) ↔ (¬ (𝑥 gcd (𝑃𝐾)) = 1 → 𝑃 ∥ (𝑥 − 0))))
7667, 75mpbird 167 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑃𝐾))) → ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
7776ralrimiva 2550 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ∀𝑥 ∈ (1...(𝑃𝐾))((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
78 rabid2 2653 . . . . . . . . 9 ((1...(𝑃𝐾)) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))} ↔ ∀𝑥 ∈ (1...(𝑃𝐾))((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0)))
7977, 78sylibr 134 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (1...(𝑃𝐾)) = {𝑥 ∈ (1...(𝑃𝐾)) ∣ ((𝑥 gcd (𝑃𝐾)) = 1 ∨ 𝑃 ∥ (𝑥 − 0))})
8064, 79eqtr4id 2229 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (1...(𝑃𝐾)))
8180fveq2d 5515 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = (♯‘(1...(𝑃𝐾))))
824nnnn0d 9218 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℕ0)
83 hashfz1 10747 . . . . . . 7 ((𝑃𝐾) ∈ ℕ0 → (♯‘(1...(𝑃𝐾))) = (𝑃𝐾))
8482, 83syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘(1...(𝑃𝐾))) = (𝑃𝐾))
85 expm1t 10534 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃))
8611, 85sylan 283 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) = ((𝑃↑(𝐾 − 1)) · 𝑃))
8781, 84, 863eqtrd 2214 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∪ {𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) · 𝑃))
88 hashcl 10745 . . . . . . . 8 ({𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1} ∈ Fin → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℕ0)
8920, 88syl 14 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℕ0)
9089nn0cnd 9220 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ∈ ℂ)
911adantr 276 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 ∈ ℕ)
92 nn0uz 9551 . . . . . . . . . . 11 0 = (ℤ‘0)
93 1m1e0 8977 . . . . . . . . . . . 12 (1 − 1) = 0
9493fveq2i 5514 . . . . . . . . . . 11 (ℤ‘(1 − 1)) = (ℤ‘0)
9592, 94eqtr4i 2201 . . . . . . . . . 10 0 = (ℤ‘(1 − 1))
9682, 95eleqtrdi 2270 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ (ℤ‘(1 − 1)))
97 0zd 9254 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 0 ∈ ℤ)
9891, 21, 96, 97hashdvds 12204 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = ((⌊‘(((𝑃𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1) − 0) / 𝑃))))
994nncnd 8922 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃𝐾) ∈ ℂ)
10099subid1d 8247 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃𝐾) − 0) = (𝑃𝐾))
101100oveq1d 5884 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) − 0) / 𝑃) = ((𝑃𝐾) / 𝑃))
10291nnap0d 8954 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝑃 # 0)
103 nnz 9261 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
104103adantl 277 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
10512, 102, 104expm1apd 10649 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) = ((𝑃𝐾) / 𝑃))
106101, 105eqtr4d 2213 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃𝐾) − 0) / 𝑃) = (𝑃↑(𝐾 − 1)))
107106fveq2d 5515 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝑃𝐾) − 0) / 𝑃)) = (⌊‘(𝑃↑(𝐾 − 1))))
1089nnzd 9363 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (𝑃↑(𝐾 − 1)) ∈ ℤ)
109 flid 10270 . . . . . . . . . . 11 ((𝑃↑(𝐾 − 1)) ∈ ℤ → (⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1)))
110108, 109syl 14 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(𝑃↑(𝐾 − 1))) = (𝑃↑(𝐾 − 1)))
111107, 110eqtrd 2210 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝑃𝐾) − 0) / 𝑃)) = (𝑃↑(𝐾 − 1)))
11293oveq1i 5879 . . . . . . . . . . . . . 14 ((1 − 1) − 0) = (0 − 0)
113 0m0e0 9020 . . . . . . . . . . . . . 14 (0 − 0) = 0
114112, 113eqtri 2198 . . . . . . . . . . . . 13 ((1 − 1) − 0) = 0
115114oveq1i 5879 . . . . . . . . . . . 12 (((1 − 1) − 0) / 𝑃) = (0 / 𝑃)
11612, 102div0apd 8733 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (0 / 𝑃) = 0)
117115, 116eqtrid 2222 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((1 − 1) − 0) / 𝑃) = 0)
118117fveq2d 5515 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((1 − 1) − 0) / 𝑃)) = (⌊‘0))
119 0z 9253 . . . . . . . . . . 11 0 ∈ ℤ
120 flid 10270 . . . . . . . . . . 11 (0 ∈ ℤ → (⌊‘0) = 0)
121119, 120ax-mp 5 . . . . . . . . . 10 (⌊‘0) = 0
122118, 121eqtrdi 2226 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (⌊‘(((1 − 1) − 0) / 𝑃)) = 0)
123111, 122oveq12d 5887 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((⌊‘(((𝑃𝐾) − 0) / 𝑃)) − (⌊‘(((1 − 1) − 0) / 𝑃))) = ((𝑃↑(𝐾 − 1)) − 0))
12410subid1d 8247 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) − 0) = (𝑃↑(𝐾 − 1)))
12598, 123, 1243eqtrd 2214 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)}) = (𝑃↑(𝐾 − 1)))
126125oveq2d 5885 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (𝑃↑(𝐾 − 1))))
12790, 10, 126comraddd 8104 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ 𝑃 ∥ (𝑥 − 0)})) = ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})))
12863, 87, 1273eqtr3rd 2219 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃))
12910, 12mulcld 7968 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((𝑃↑(𝐾 − 1)) · 𝑃) ∈ ℂ)
130129, 10, 90subaddd 8276 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → ((((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) ↔ ((𝑃↑(𝐾 − 1)) + (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1})) = ((𝑃↑(𝐾 − 1)) · 𝑃)))
131128, 130mpbird 167 . . 3 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (((𝑃↑(𝐾 − 1)) · 𝑃) − (𝑃↑(𝐾 − 1))) = (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}))
13216, 18, 1313eqtrrd 2215 . 2 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (♯‘{𝑥 ∈ (1...(𝑃𝐾)) ∣ (𝑥 gcd (𝑃𝐾)) = 1}) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
1336, 132eqtrd 2210 1 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  {crab 2459  cun 3127  cin 3128  c0 3422   class class class wbr 4000  cfv 5212  (class class class)co 5869  Fincfn 6734  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  cmin 8118   / cdiv 8618  cn 8908  0cn0 9165  cz 9242  cuz 9517  ...cfz 9995  cfl 10254  cexp 10505  chash 10739  cdvds 11778   gcd cgcd 11926  cprime 12090  ϕcphi 12192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194
This theorem is referenced by:  phiprm  12206
  Copyright terms: Public domain W3C validator