ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  comraddd Unicode version

Theorem comraddd 8229
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
comraddd.1  |-  ( ph  ->  B  e.  CC )
comraddd.2  |-  ( ph  ->  C  e.  CC )
comraddd.3  |-  ( ph  ->  A  =  ( B  +  C ) )
Assertion
Ref Expression
comraddd  |-  ( ph  ->  A  =  ( C  +  B ) )

Proof of Theorem comraddd
StepHypRef Expression
1 comraddd.3 . 2  |-  ( ph  ->  A  =  ( B  +  C ) )
2 comraddd.1 . . 3  |-  ( ph  ->  B  e.  CC )
3 comraddd.2 . . 3  |-  ( ph  ->  C  e.  CC )
42, 3addcomd 8223 . 2  |-  ( ph  ->  ( B  +  C
)  =  ( C  +  B ) )
51, 4eqtrd 2238 1  |-  ( ph  ->  A  =  ( C  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176  (class class class)co 5944   CCcc 7923    + caddc 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187  ax-addcom 8025
This theorem depends on definitions:  df-bi 117  df-cleq 2198
This theorem is referenced by:  mvrladdd  8439  hashfz  10966  bdtrilem  11550  clim2ser2  11649  fsumparts  11781  arisum  11809  divalglemnn  12229  phiprmpw  12544  mulgdir  13490  metrtri  14849  apdifflemr  15990
  Copyright terms: Public domain W3C validator