ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  comraddd Unicode version

Theorem comraddd 8200
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
comraddd.1  |-  ( ph  ->  B  e.  CC )
comraddd.2  |-  ( ph  ->  C  e.  CC )
comraddd.3  |-  ( ph  ->  A  =  ( B  +  C ) )
Assertion
Ref Expression
comraddd  |-  ( ph  ->  A  =  ( C  +  B ) )

Proof of Theorem comraddd
StepHypRef Expression
1 comraddd.3 . 2  |-  ( ph  ->  A  =  ( B  +  C ) )
2 comraddd.1 . . 3  |-  ( ph  ->  B  e.  CC )
3 comraddd.2 . . 3  |-  ( ph  ->  C  e.  CC )
42, 3addcomd 8194 . 2  |-  ( ph  ->  ( B  +  C
)  =  ( C  +  B ) )
51, 4eqtrd 2229 1  |-  ( ph  ->  A  =  ( C  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894    + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178  ax-addcom 7996
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  mvrladdd  8410  hashfz  10930  bdtrilem  11421  clim2ser2  11520  fsumparts  11652  arisum  11680  divalglemnn  12100  phiprmpw  12415  mulgdir  13360  metrtri  14697  apdifflemr  15778
  Copyright terms: Public domain W3C validator