| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > comraddd | Unicode version | ||
| Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| comraddd.1 |
|
| comraddd.2 |
|
| comraddd.3 |
|
| Ref | Expression |
|---|---|
| comraddd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comraddd.3 |
. 2
| |
| 2 | comraddd.1 |
. . 3
| |
| 3 | comraddd.2 |
. . 3
| |
| 4 | 2, 3 | addcomd 8177 |
. 2
|
| 5 | 1, 4 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 ax-addcom 7979 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: mvrladdd 8393 hashfz 10913 bdtrilem 11404 clim2ser2 11503 fsumparts 11635 arisum 11663 divalglemnn 12083 phiprmpw 12390 mulgdir 13284 metrtri 14613 apdifflemr 15691 |
| Copyright terms: Public domain | W3C validator |