Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > comraddd | Unicode version |
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
comraddd.1 | |
comraddd.2 | |
comraddd.3 |
Ref | Expression |
---|---|
comraddd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comraddd.3 | . 2 | |
2 | comraddd.1 | . . 3 | |
3 | comraddd.2 | . . 3 | |
4 | 2, 3 | addcomd 8082 | . 2 |
5 | 1, 4 | eqtrd 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 (class class class)co 5865 cc 7784 caddc 7789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ext 2157 ax-addcom 7886 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 |
This theorem is referenced by: mvrladdd 8298 hashfz 10769 bdtrilem 11215 clim2ser2 11314 fsumparts 11446 arisum 11474 divalglemnn 11890 phiprmpw 12189 mulgdir 12875 metrtri 13448 apdifflemr 14356 |
Copyright terms: Public domain | W3C validator |