ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgdir GIF version

Theorem mulgdir 13044
Description: Sum of group multiples, generalized to โ„ค. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b ๐ต = (Baseโ€˜๐บ)
mulgnndir.t ยท = (.gโ€˜๐บ)
mulgnndir.p + = (+gโ€˜๐บ)
Assertion
Ref Expression
mulgdir ((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((๐‘€ + ๐‘) ยท ๐‘‹) = ((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)))

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4 ๐ต = (Baseโ€˜๐บ)
2 mulgnndir.t . . . 4 ยท = (.gโ€˜๐บ)
3 mulgnndir.p . . . 4 + = (+gโ€˜๐บ)
41, 2, 3mulgdirlem 13043 . . 3 ((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((๐‘€ + ๐‘) ยท ๐‘‹) = ((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)))
543expa 1204 . 2 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง (๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((๐‘€ + ๐‘) ยท ๐‘‹) = ((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)))
6 simpll 527 . . . . . 6 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ๐บ โˆˆ Grp)
7 simpr2 1005 . . . . . . . 8 ((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ๐‘ โˆˆ โ„ค)
87adantr 276 . . . . . . 7 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ๐‘ โˆˆ โ„ค)
98znegcld 9390 . . . . . 6 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ -๐‘ โˆˆ โ„ค)
10 simpr1 1004 . . . . . . . 8 ((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ๐‘€ โˆˆ โ„ค)
1110adantr 276 . . . . . . 7 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ๐‘€ โˆˆ โ„ค)
1211znegcld 9390 . . . . . 6 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ -๐‘€ โˆˆ โ„ค)
13 simplr3 1042 . . . . . 6 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ๐‘‹ โˆˆ ๐ต)
1411zcnd 9389 . . . . . . . . 9 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ๐‘€ โˆˆ โ„‚)
1514negcld 8268 . . . . . . . 8 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ -๐‘€ โˆˆ โ„‚)
168zcnd 9389 . . . . . . . . 9 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ๐‘ โˆˆ โ„‚)
1716negcld 8268 . . . . . . . 8 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ -๐‘ โˆˆ โ„‚)
1814, 16negdid 8294 . . . . . . . 8 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ -(๐‘€ + ๐‘) = (-๐‘€ + -๐‘))
1915, 17, 18comraddd 8127 . . . . . . 7 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ -(๐‘€ + ๐‘) = (-๐‘ + -๐‘€))
20 simpr 110 . . . . . . 7 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ -(๐‘€ + ๐‘) โˆˆ โ„•0)
2119, 20eqeltrrd 2265 . . . . . 6 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ (-๐‘ + -๐‘€) โˆˆ โ„•0)
221, 2, 3mulgdirlem 13043 . . . . . 6 ((๐บ โˆˆ Grp โˆง (-๐‘ โˆˆ โ„ค โˆง -๐‘€ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โˆง (-๐‘ + -๐‘€) โˆˆ โ„•0) โ†’ ((-๐‘ + -๐‘€) ยท ๐‘‹) = ((-๐‘ ยท ๐‘‹) + (-๐‘€ ยท ๐‘‹)))
236, 9, 12, 13, 21, 22syl131anc 1261 . . . . 5 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((-๐‘ + -๐‘€) ยท ๐‘‹) = ((-๐‘ ยท ๐‘‹) + (-๐‘€ ยท ๐‘‹)))
2419oveq1d 5903 . . . . . 6 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ (-(๐‘€ + ๐‘) ยท ๐‘‹) = ((-๐‘ + -๐‘€) ยท ๐‘‹))
2510, 7zaddcld 9392 . . . . . . . 8 ((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (๐‘€ + ๐‘) โˆˆ โ„ค)
2625adantr 276 . . . . . . 7 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ (๐‘€ + ๐‘) โˆˆ โ„ค)
27 eqid 2187 . . . . . . . 8 (invgโ€˜๐บ) = (invgโ€˜๐บ)
281, 2, 27mulgneg 13030 . . . . . . 7 ((๐บ โˆˆ Grp โˆง (๐‘€ + ๐‘) โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (-(๐‘€ + ๐‘) ยท ๐‘‹) = ((invgโ€˜๐บ)โ€˜((๐‘€ + ๐‘) ยท ๐‘‹)))
296, 26, 13, 28syl3anc 1248 . . . . . 6 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ (-(๐‘€ + ๐‘) ยท ๐‘‹) = ((invgโ€˜๐บ)โ€˜((๐‘€ + ๐‘) ยท ๐‘‹)))
3024, 29eqtr3d 2222 . . . . 5 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((-๐‘ + -๐‘€) ยท ๐‘‹) = ((invgโ€˜๐บ)โ€˜((๐‘€ + ๐‘) ยท ๐‘‹)))
311, 2, 27mulgneg 13030 . . . . . . . 8 ((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (-๐‘ ยท ๐‘‹) = ((invgโ€˜๐บ)โ€˜(๐‘ ยท ๐‘‹)))
326, 8, 13, 31syl3anc 1248 . . . . . . 7 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ (-๐‘ ยท ๐‘‹) = ((invgโ€˜๐บ)โ€˜(๐‘ ยท ๐‘‹)))
331, 2, 27mulgneg 13030 . . . . . . . 8 ((๐บ โˆˆ Grp โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (-๐‘€ ยท ๐‘‹) = ((invgโ€˜๐บ)โ€˜(๐‘€ ยท ๐‘‹)))
346, 11, 13, 33syl3anc 1248 . . . . . . 7 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ (-๐‘€ ยท ๐‘‹) = ((invgโ€˜๐บ)โ€˜(๐‘€ ยท ๐‘‹)))
3532, 34oveq12d 5906 . . . . . 6 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((-๐‘ ยท ๐‘‹) + (-๐‘€ ยท ๐‘‹)) = (((invgโ€˜๐บ)โ€˜(๐‘ ยท ๐‘‹)) + ((invgโ€˜๐บ)โ€˜(๐‘€ ยท ๐‘‹))))
361, 2mulgcl 13029 . . . . . . . 8 ((๐บ โˆˆ Grp โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘€ ยท ๐‘‹) โˆˆ ๐ต)
376, 11, 13, 36syl3anc 1248 . . . . . . 7 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ (๐‘€ ยท ๐‘‹) โˆˆ ๐ต)
381, 2mulgcl 13029 . . . . . . . 8 ((๐บ โˆˆ Grp โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ ยท ๐‘‹) โˆˆ ๐ต)
396, 8, 13, 38syl3anc 1248 . . . . . . 7 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ (๐‘ ยท ๐‘‹) โˆˆ ๐ต)
401, 3, 27grpinvadd 12972 . . . . . . 7 ((๐บ โˆˆ Grp โˆง (๐‘€ ยท ๐‘‹) โˆˆ ๐ต โˆง (๐‘ ยท ๐‘‹) โˆˆ ๐ต) โ†’ ((invgโ€˜๐บ)โ€˜((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹))) = (((invgโ€˜๐บ)โ€˜(๐‘ ยท ๐‘‹)) + ((invgโ€˜๐บ)โ€˜(๐‘€ ยท ๐‘‹))))
416, 37, 39, 40syl3anc 1248 . . . . . 6 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((invgโ€˜๐บ)โ€˜((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹))) = (((invgโ€˜๐บ)โ€˜(๐‘ ยท ๐‘‹)) + ((invgโ€˜๐บ)โ€˜(๐‘€ ยท ๐‘‹))))
4235, 41eqtr4d 2223 . . . . 5 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((-๐‘ ยท ๐‘‹) + (-๐‘€ ยท ๐‘‹)) = ((invgโ€˜๐บ)โ€˜((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹))))
4323, 30, 423eqtr3d 2228 . . . 4 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((invgโ€˜๐บ)โ€˜((๐‘€ + ๐‘) ยท ๐‘‹)) = ((invgโ€˜๐บ)โ€˜((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹))))
4443fveq2d 5531 . . 3 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((invgโ€˜๐บ)โ€˜((invgโ€˜๐บ)โ€˜((๐‘€ + ๐‘) ยท ๐‘‹))) = ((invgโ€˜๐บ)โ€˜((invgโ€˜๐บ)โ€˜((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)))))
451, 2mulgcl 13029 . . . . 5 ((๐บ โˆˆ Grp โˆง (๐‘€ + ๐‘) โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต) โ†’ ((๐‘€ + ๐‘) ยท ๐‘‹) โˆˆ ๐ต)
466, 26, 13, 45syl3anc 1248 . . . 4 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((๐‘€ + ๐‘) ยท ๐‘‹) โˆˆ ๐ต)
471, 27grpinvinv 12961 . . . 4 ((๐บ โˆˆ Grp โˆง ((๐‘€ + ๐‘) ยท ๐‘‹) โˆˆ ๐ต) โ†’ ((invgโ€˜๐บ)โ€˜((invgโ€˜๐บ)โ€˜((๐‘€ + ๐‘) ยท ๐‘‹))) = ((๐‘€ + ๐‘) ยท ๐‘‹))
486, 46, 47syl2anc 411 . . 3 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((invgโ€˜๐บ)โ€˜((invgโ€˜๐บ)โ€˜((๐‘€ + ๐‘) ยท ๐‘‹))) = ((๐‘€ + ๐‘) ยท ๐‘‹))
491, 3grpcl 12904 . . . . 5 ((๐บ โˆˆ Grp โˆง (๐‘€ ยท ๐‘‹) โˆˆ ๐ต โˆง (๐‘ ยท ๐‘‹) โˆˆ ๐ต) โ†’ ((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)) โˆˆ ๐ต)
506, 37, 39, 49syl3anc 1248 . . . 4 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)) โˆˆ ๐ต)
511, 27grpinvinv 12961 . . . 4 ((๐บ โˆˆ Grp โˆง ((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)) โˆˆ ๐ต) โ†’ ((invgโ€˜๐บ)โ€˜((invgโ€˜๐บ)โ€˜((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)))) = ((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)))
526, 50, 51syl2anc 411 . . 3 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((invgโ€˜๐บ)โ€˜((invgโ€˜๐บ)โ€˜((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)))) = ((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)))
5344, 48, 523eqtr3d 2228 . 2 (((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โˆง -(๐‘€ + ๐‘) โˆˆ โ„•0) โ†’ ((๐‘€ + ๐‘) ยท ๐‘‹) = ((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)))
54 elznn0 9281 . . . 4 ((๐‘€ + ๐‘) โˆˆ โ„ค โ†” ((๐‘€ + ๐‘) โˆˆ โ„ โˆง ((๐‘€ + ๐‘) โˆˆ โ„•0 โˆจ -(๐‘€ + ๐‘) โˆˆ โ„•0)))
5554simprbi 275 . . 3 ((๐‘€ + ๐‘) โˆˆ โ„ค โ†’ ((๐‘€ + ๐‘) โˆˆ โ„•0 โˆจ -(๐‘€ + ๐‘) โˆˆ โ„•0))
5625, 55syl 14 . 2 ((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((๐‘€ + ๐‘) โˆˆ โ„•0 โˆจ -(๐‘€ + ๐‘) โˆˆ โ„•0))
575, 53, 56mpjaodan 799 1 ((๐บ โˆˆ Grp โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((๐‘€ + ๐‘) ยท ๐‘‹) = ((๐‘€ ยท ๐‘‹) + (๐‘ ยท ๐‘‹)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆจ wo 709   โˆง w3a 979   = wceq 1363   โˆˆ wcel 2158  โ€˜cfv 5228  (class class class)co 5888  โ„cr 7823   + caddc 7827  -cneg 8142  โ„•0cn0 9189  โ„คcz 9266  Basecbs 12475  +gcplusg 12550  Grpcgrp 12896  invgcminusg 12897  .gcmg 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-2 8991  df-n0 9190  df-z 9267  df-uz 9542  df-fz 10022  df-seqfrec 10459  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12837  df-grp 12899  df-minusg 12900  df-mulg 13012
This theorem is referenced by:  mulgp1  13045  mulgneg2  13046  mulgmodid  13051  mulgsubdir  13052
  Copyright terms: Public domain W3C validator