ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgdir GIF version

Theorem mulgdir 13565
Description: Sum of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgdir ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4 𝐵 = (Base‘𝐺)
2 mulgnndir.t . . . 4 · = (.g𝐺)
3 mulgnndir.p . . . 4 + = (+g𝐺)
41, 2, 3mulgdirlem 13564 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
543expa 1206 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6 simpll 527 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐺 ∈ Grp)
7 simpr2 1007 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
87adantr 276 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℤ)
98znegcld 9517 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑁 ∈ ℤ)
10 simpr1 1006 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
1110adantr 276 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℤ)
1211znegcld 9517 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℤ)
13 simplr3 1044 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑋𝐵)
1411zcnd 9516 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℂ)
1514negcld 8390 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℂ)
168zcnd 9516 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℂ)
1716negcld 8390 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑁 ∈ ℂ)
1814, 16negdid 8416 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑀 + -𝑁))
1915, 17, 18comraddd 8249 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑁 + -𝑀))
20 simpr 110 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℕ0)
2119, 20eqeltrrd 2284 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑁 + -𝑀) ∈ ℕ0)
221, 2, 3mulgdirlem 13564 . . . . . 6 ((𝐺 ∈ Grp ∧ (-𝑁 ∈ ℤ ∧ -𝑀 ∈ ℤ ∧ 𝑋𝐵) ∧ (-𝑁 + -𝑀) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)))
236, 9, 12, 13, 21, 22syl131anc 1263 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)))
2419oveq1d 5972 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) · 𝑋) = ((-𝑁 + -𝑀) · 𝑋))
2510, 7zaddcld 9519 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ ℤ)
2625adantr 276 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
27 eqid 2206 . . . . . . . 8 (invg𝐺) = (invg𝐺)
281, 2, 27mulgneg 13551 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑀 + 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
296, 26, 13, 28syl3anc 1250 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
3024, 29eqtr3d 2241 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
311, 2, 27mulgneg 13551 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
326, 8, 13, 31syl3anc 1250 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
331, 2, 27mulgneg 13551 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
346, 11, 13, 33syl3anc 1250 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
3532, 34oveq12d 5975 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
361, 2mulgcl 13550 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
376, 11, 13, 36syl3anc 1250 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 · 𝑋) ∈ 𝐵)
381, 2mulgcl 13550 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
396, 8, 13, 38syl3anc 1250 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝐵)
401, 3, 27grpinvadd 13485 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
416, 37, 39, 40syl3anc 1250 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
4235, 41eqtr4d 2242 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))))
4323, 30, 423eqtr3d 2247 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))))
4443fveq2d 5593 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))))
451, 2mulgcl 13550 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
466, 26, 13, 45syl3anc 1250 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
471, 27grpinvinv 13474 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
486, 46, 47syl2anc 411 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
491, 3grpcl 13415 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵)
506, 37, 39, 49syl3anc 1250 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵)
511, 27grpinvinv 13474 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
526, 50, 51syl2anc 411 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5344, 48, 523eqtr3d 2247 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
54 elznn0 9407 . . . 4 ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑀 + 𝑁) ∈ ℝ ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0)))
5554simprbi 275 . . 3 ((𝑀 + 𝑁) ∈ ℤ → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
5625, 55syl 14 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
575, 53, 56mpjaodan 800 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  w3a 981   = wceq 1373  wcel 2177  cfv 5280  (class class class)co 5957  cr 7944   + caddc 7948  -cneg 8264  0cn0 9315  cz 9392  Basecbs 12907  +gcplusg 12984  Grpcgrp 13407  invgcminusg 13408  .gcmg 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-seqfrec 10615  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-mulg 13531
This theorem is referenced by:  mulgp1  13566  mulgneg2  13567  mulgmodid  13572  mulgsubdir  13573  mulgghm2  14445
  Copyright terms: Public domain W3C validator