| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashfz | GIF version | ||
| Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) |
| Ref | Expression |
|---|---|
| hashfz | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 9635 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
| 2 | eluzelz 9639 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 3 | 1z 9380 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 4 | zsubcl 9395 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 − 𝐴) ∈ ℤ) | |
| 5 | 3, 1, 4 | sylancr 414 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (1 − 𝐴) ∈ ℤ) |
| 6 | fzen 10147 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴)))) | |
| 7 | 1, 2, 5, 6 | syl3anc 1249 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴)))) |
| 8 | 1 | zcnd 9478 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
| 9 | ax-1cn 8000 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 10 | pncan3 8262 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + (1 − 𝐴)) = 1) | |
| 11 | 8, 9, 10 | sylancl 413 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴 + (1 − 𝐴)) = 1) |
| 12 | 1cnd 8070 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
| 13 | 2 | zcnd 9478 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
| 14 | 13, 8 | subcld 8365 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℂ) |
| 15 | 13, 12, 8 | addsub12d 8388 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 − 𝐴)) = (1 + (𝐵 − 𝐴))) |
| 16 | 12, 14, 15 | comraddd 8211 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 − 𝐴)) = ((𝐵 − 𝐴) + 1)) |
| 17 | 11, 16 | oveq12d 5952 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))) = (1...((𝐵 − 𝐴) + 1))) |
| 18 | 7, 17 | breqtrd 4069 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1))) |
| 19 | 1, 2 | fzfigd 10557 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ∈ Fin) |
| 20 | 1zzd 9381 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℤ) | |
| 21 | 2, 1 | zsubcld 9482 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℤ) |
| 22 | 21 | peano2zd 9480 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 𝐴) + 1) ∈ ℤ) |
| 23 | 20, 22 | fzfigd 10557 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (1...((𝐵 − 𝐴) + 1)) ∈ Fin) |
| 24 | hashen 10910 | . . . 4 ⊢ (((𝐴...𝐵) ∈ Fin ∧ (1...((𝐵 − 𝐴) + 1)) ∈ Fin) → ((♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1))) ↔ (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1)))) | |
| 25 | 19, 23, 24 | syl2anc 411 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1))) ↔ (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1)))) |
| 26 | 18, 25 | mpbird 167 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1)))) |
| 27 | uznn0sub 9662 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℕ0) | |
| 28 | peano2nn0 9317 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℕ0 → ((𝐵 − 𝐴) + 1) ∈ ℕ0) | |
| 29 | hashfz1 10909 | . . 3 ⊢ (((𝐵 − 𝐴) + 1) ∈ ℕ0 → (♯‘(1...((𝐵 − 𝐴) + 1))) = ((𝐵 − 𝐴) + 1)) | |
| 30 | 27, 28, 29 | 3syl 17 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(1...((𝐵 − 𝐴) + 1))) = ((𝐵 − 𝐴) + 1)) |
| 31 | 26, 30 | eqtrd 2237 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5268 (class class class)co 5934 ≈ cen 6815 Fincfn 6817 ℂcc 7905 1c1 7908 + caddc 7910 − cmin 8225 ℕ0cn0 9277 ℤcz 9354 ℤ≥cuz 9630 ...cfz 10112 ♯chash 10901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-1o 6492 df-er 6610 df-en 6818 df-dom 6819 df-fin 6820 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-fz 10113 df-ihash 10902 |
| This theorem is referenced by: hashfzo 10948 hashfzp1 10950 hashfz0 10951 0sgmppw 15383 gausslemma2dlem5 15461 |
| Copyright terms: Public domain | W3C validator |