| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashfz | GIF version | ||
| Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) |
| Ref | Expression |
|---|---|
| hashfz | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 9625 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
| 2 | eluzelz 9629 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 3 | 1z 9371 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 4 | zsubcl 9386 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 − 𝐴) ∈ ℤ) | |
| 5 | 3, 1, 4 | sylancr 414 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (1 − 𝐴) ∈ ℤ) |
| 6 | fzen 10137 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴)))) | |
| 7 | 1, 2, 5, 6 | syl3anc 1249 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴)))) |
| 8 | 1 | zcnd 9468 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
| 9 | ax-1cn 7991 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 10 | pncan3 8253 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + (1 − 𝐴)) = 1) | |
| 11 | 8, 9, 10 | sylancl 413 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴 + (1 − 𝐴)) = 1) |
| 12 | 1cnd 8061 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
| 13 | 2 | zcnd 9468 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
| 14 | 13, 8 | subcld 8356 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℂ) |
| 15 | 13, 12, 8 | addsub12d 8379 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 − 𝐴)) = (1 + (𝐵 − 𝐴))) |
| 16 | 12, 14, 15 | comraddd 8202 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 − 𝐴)) = ((𝐵 − 𝐴) + 1)) |
| 17 | 11, 16 | oveq12d 5943 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))) = (1...((𝐵 − 𝐴) + 1))) |
| 18 | 7, 17 | breqtrd 4060 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1))) |
| 19 | 1, 2 | fzfigd 10542 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ∈ Fin) |
| 20 | 1zzd 9372 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℤ) | |
| 21 | 2, 1 | zsubcld 9472 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℤ) |
| 22 | 21 | peano2zd 9470 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 𝐴) + 1) ∈ ℤ) |
| 23 | 20, 22 | fzfigd 10542 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (1...((𝐵 − 𝐴) + 1)) ∈ Fin) |
| 24 | hashen 10895 | . . . 4 ⊢ (((𝐴...𝐵) ∈ Fin ∧ (1...((𝐵 − 𝐴) + 1)) ∈ Fin) → ((♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1))) ↔ (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1)))) | |
| 25 | 19, 23, 24 | syl2anc 411 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1))) ↔ (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1)))) |
| 26 | 18, 25 | mpbird 167 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1)))) |
| 27 | uznn0sub 9652 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℕ0) | |
| 28 | peano2nn0 9308 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℕ0 → ((𝐵 − 𝐴) + 1) ∈ ℕ0) | |
| 29 | hashfz1 10894 | . . 3 ⊢ (((𝐵 − 𝐴) + 1) ∈ ℕ0 → (♯‘(1...((𝐵 − 𝐴) + 1))) = ((𝐵 − 𝐴) + 1)) | |
| 30 | 27, 28, 29 | 3syl 17 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(1...((𝐵 − 𝐴) + 1))) = ((𝐵 − 𝐴) + 1)) |
| 31 | 26, 30 | eqtrd 2229 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ≈ cen 6806 Fincfn 6808 ℂcc 7896 1c1 7899 + caddc 7901 − cmin 8216 ℕ0cn0 9268 ℤcz 9345 ℤ≥cuz 9620 ...cfz 10102 ♯chash 10886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 df-uz 9621 df-fz 10103 df-ihash 10887 |
| This theorem is referenced by: hashfzo 10933 hashfzp1 10935 hashfz0 10936 0sgmppw 15337 gausslemma2dlem5 15415 |
| Copyright terms: Public domain | W3C validator |