Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashfz | GIF version |
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) |
Ref | Expression |
---|---|
hashfz | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9492 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
2 | eluzelz 9496 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
3 | 1z 9238 | . . . . . 6 ⊢ 1 ∈ ℤ | |
4 | zsubcl 9253 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 − 𝐴) ∈ ℤ) | |
5 | 3, 1, 4 | sylancr 412 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (1 − 𝐴) ∈ ℤ) |
6 | fzen 9999 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴)))) | |
7 | 1, 2, 5, 6 | syl3anc 1233 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴)))) |
8 | 1 | zcnd 9335 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
9 | ax-1cn 7867 | . . . . . 6 ⊢ 1 ∈ ℂ | |
10 | pncan3 8127 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + (1 − 𝐴)) = 1) | |
11 | 8, 9, 10 | sylancl 411 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴 + (1 − 𝐴)) = 1) |
12 | 1cnd 7936 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
13 | 2 | zcnd 9335 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
14 | 13, 8 | subcld 8230 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℂ) |
15 | 13, 12, 8 | addsub12d 8253 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 − 𝐴)) = (1 + (𝐵 − 𝐴))) |
16 | 12, 14, 15 | comraddd 8076 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 − 𝐴)) = ((𝐵 − 𝐴) + 1)) |
17 | 11, 16 | oveq12d 5871 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))) = (1...((𝐵 − 𝐴) + 1))) |
18 | 7, 17 | breqtrd 4015 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1))) |
19 | 1, 2 | fzfigd 10387 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ∈ Fin) |
20 | 1zzd 9239 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℤ) | |
21 | 2, 1 | zsubcld 9339 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℤ) |
22 | 21 | peano2zd 9337 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 𝐴) + 1) ∈ ℤ) |
23 | 20, 22 | fzfigd 10387 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (1...((𝐵 − 𝐴) + 1)) ∈ Fin) |
24 | hashen 10718 | . . . 4 ⊢ (((𝐴...𝐵) ∈ Fin ∧ (1...((𝐵 − 𝐴) + 1)) ∈ Fin) → ((♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1))) ↔ (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1)))) | |
25 | 19, 23, 24 | syl2anc 409 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1))) ↔ (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1)))) |
26 | 18, 25 | mpbird 166 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1)))) |
27 | uznn0sub 9518 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℕ0) | |
28 | peano2nn0 9175 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℕ0 → ((𝐵 − 𝐴) + 1) ∈ ℕ0) | |
29 | hashfz1 10717 | . . 3 ⊢ (((𝐵 − 𝐴) + 1) ∈ ℕ0 → (♯‘(1...((𝐵 − 𝐴) + 1))) = ((𝐵 − 𝐴) + 1)) | |
30 | 27, 28, 29 | 3syl 17 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(1...((𝐵 − 𝐴) + 1))) = ((𝐵 − 𝐴) + 1)) |
31 | 26, 30 | eqtrd 2203 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ≈ cen 6716 Fincfn 6718 ℂcc 7772 1c1 7775 + caddc 7777 − cmin 8090 ℕ0cn0 9135 ℤcz 9212 ℤ≥cuz 9487 ...cfz 9965 ♯chash 10709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-1o 6395 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-ihash 10710 |
This theorem is referenced by: hashfzo 10757 hashfzp1 10759 hashfz0 10760 |
Copyright terms: Public domain | W3C validator |