ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz GIF version

Theorem hashfz 10803
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hashfz (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))

Proof of Theorem hashfz
StepHypRef Expression
1 eluzel2 9535 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 eluzelz 9539 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
3 1z 9281 . . . . . 6 1 ∈ ℤ
4 zsubcl 9296 . . . . . 6 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 − 𝐴) ∈ ℤ)
53, 1, 4sylancr 414 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (1 − 𝐴) ∈ ℤ)
6 fzen 10045 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))))
71, 2, 5, 6syl3anc 1238 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))))
81zcnd 9378 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
9 ax-1cn 7906 . . . . . 6 1 ∈ ℂ
10 pncan3 8167 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + (1 − 𝐴)) = 1)
118, 9, 10sylancl 413 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐴 + (1 − 𝐴)) = 1)
12 1cnd 7975 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
132zcnd 9378 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
1413, 8subcld 8270 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℂ)
1513, 12, 8addsub12d 8293 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 − 𝐴)) = (1 + (𝐵𝐴)))
1612, 14, 15comraddd 8116 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 − 𝐴)) = ((𝐵𝐴) + 1))
1711, 16oveq12d 5895 . . . 4 (𝐵 ∈ (ℤ𝐴) → ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))) = (1...((𝐵𝐴) + 1)))
187, 17breqtrd 4031 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴...𝐵) ≈ (1...((𝐵𝐴) + 1)))
191, 2fzfigd 10433 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴...𝐵) ∈ Fin)
20 1zzd 9282 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℤ)
212, 1zsubcld 9382 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℤ)
2221peano2zd 9380 . . . . 5 (𝐵 ∈ (ℤ𝐴) → ((𝐵𝐴) + 1) ∈ ℤ)
2320, 22fzfigd 10433 . . . 4 (𝐵 ∈ (ℤ𝐴) → (1...((𝐵𝐴) + 1)) ∈ Fin)
24 hashen 10766 . . . 4 (((𝐴...𝐵) ∈ Fin ∧ (1...((𝐵𝐴) + 1)) ∈ Fin) → ((♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵𝐴) + 1))) ↔ (𝐴...𝐵) ≈ (1...((𝐵𝐴) + 1))))
2519, 23, 24syl2anc 411 . . 3 (𝐵 ∈ (ℤ𝐴) → ((♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵𝐴) + 1))) ↔ (𝐴...𝐵) ≈ (1...((𝐵𝐴) + 1))))
2618, 25mpbird 167 . 2 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵𝐴) + 1))))
27 uznn0sub 9561 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℕ0)
28 peano2nn0 9218 . . 3 ((𝐵𝐴) ∈ ℕ0 → ((𝐵𝐴) + 1) ∈ ℕ0)
29 hashfz1 10765 . . 3 (((𝐵𝐴) + 1) ∈ ℕ0 → (♯‘(1...((𝐵𝐴) + 1))) = ((𝐵𝐴) + 1))
3027, 28, 293syl 17 . 2 (𝐵 ∈ (ℤ𝐴) → (♯‘(1...((𝐵𝐴) + 1))) = ((𝐵𝐴) + 1))
3126, 30eqtrd 2210 1 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wcel 2148   class class class wbr 4005  cfv 5218  (class class class)co 5877  cen 6740  Fincfn 6742  cc 7811  1c1 7814   + caddc 7816  cmin 8130  0cn0 9178  cz 9255  cuz 9530  ...cfz 10010  chash 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-ihash 10758
This theorem is referenced by:  hashfzo  10804  hashfzp1  10806  hashfz0  10807
  Copyright terms: Public domain W3C validator