ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnn GIF version

Theorem divalglemnn 12424
Description: Lemma for divalg 12430. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemnn ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalglemnn
StepHypRef Expression
1 zmodcl 10561 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℕ0)
21nn0zd 9563 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℤ)
3 znq 9815 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℚ)
43flqcld 10492 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℤ)
51nn0ge0d 9421 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ≤ (𝑁 mod 𝐷))
6 zq 9817 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
76adantr 276 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℚ)
8 nnq 9824 . . . . 5 (𝐷 ∈ ℕ → 𝐷 ∈ ℚ)
98adantl 277 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℚ)
10 nngt0 9131 . . . . 5 (𝐷 ∈ ℕ → 0 < 𝐷)
1110adantl 277 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 < 𝐷)
12 modqlt 10550 . . . 4 ((𝑁 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝑁 mod 𝐷) < 𝐷)
137, 9, 11, 12syl3anc 1271 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < 𝐷)
14 nnre 9113 . . . . 5 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
1514adantl 277 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℝ)
16 0red 8143 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ∈ ℝ)
1716, 15, 11ltled 8261 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ≤ 𝐷)
1815, 17absidd 11673 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (abs‘𝐷) = 𝐷)
1913, 18breqtrrd 4110 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < (abs‘𝐷))
201nn0cnd 9420 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℂ)
214zcnd 9566 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℂ)
22 simpr 110 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℕ)
2322nncnd 9120 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2421, 23mulcld 8163 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((⌊‘(𝑁 / 𝐷)) · 𝐷) ∈ ℂ)
25 modqvalr 10542 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝑁 mod 𝐷) = (𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
267, 9, 11, 25syl3anc 1271 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
2726oveq1d 6015 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 mod 𝐷) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)) = ((𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
28 simpl 109 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℤ)
2928zcnd 9566 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℂ)
3029, 24npcand 8457 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)) = 𝑁)
3127, 30eqtr2d 2263 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 = ((𝑁 mod 𝐷) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
3220, 24, 31comraddd 8299 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))
33 breq2 4086 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (0 ≤ 𝑟 ↔ 0 ≤ (𝑁 mod 𝐷)))
34 breq1 4085 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (𝑟 < (abs‘𝐷) ↔ (𝑁 mod 𝐷) < (abs‘𝐷)))
35 oveq2 6008 . . . . 5 (𝑟 = (𝑁 mod 𝐷) → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)))
3635eqeq2d 2241 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷))))
3733, 34, 363anbi123d 1346 . . 3 (𝑟 = (𝑁 mod 𝐷) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)))))
38 oveq1 6007 . . . . . 6 (𝑞 = (⌊‘(𝑁 / 𝐷)) → (𝑞 · 𝐷) = ((⌊‘(𝑁 / 𝐷)) · 𝐷))
3938oveq1d 6015 . . . . 5 (𝑞 = (⌊‘(𝑁 / 𝐷)) → ((𝑞 · 𝐷) + (𝑁 mod 𝐷)) = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))
4039eqeq2d 2241 . . . 4 (𝑞 = (⌊‘(𝑁 / 𝐷)) → (𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)) ↔ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷))))
41403anbi3d 1352 . . 3 (𝑞 = (⌊‘(𝑁 / 𝐷)) → ((0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷))) ↔ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))))
4237, 41rspc2ev 2922 . 2 (((𝑁 mod 𝐷) ∈ ℤ ∧ (⌊‘(𝑁 / 𝐷)) ∈ ℤ ∧ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
432, 4, 5, 19, 32, 42syl113anc 1283 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4082  cfv 5317  (class class class)co 6000  cr 7994  0cc0 7995   + caddc 7998   · cmul 8000   < clt 8177  cle 8178  cmin 8313   / cdiv 8815  cn 9106  cz 9442  cq 9810  cfl 10483   mod cmo 10539  abscabs 11503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505
This theorem is referenced by:  divalglemeunn  12427  divalglemex  12428
  Copyright terms: Public domain W3C validator