ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnn GIF version

Theorem divalglemnn 11360
Description: Lemma for divalg 11366. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemnn ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalglemnn
StepHypRef Expression
1 zmodcl 9900 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℕ0)
21nn0zd 8965 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℤ)
3 znq 9208 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℚ)
43flqcld 9833 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℤ)
51nn0ge0d 8827 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ≤ (𝑁 mod 𝐷))
6 zq 9210 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
76adantr 271 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℚ)
8 nnq 9217 . . . . 5 (𝐷 ∈ ℕ → 𝐷 ∈ ℚ)
98adantl 272 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℚ)
10 nngt0 8545 . . . . 5 (𝐷 ∈ ℕ → 0 < 𝐷)
1110adantl 272 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 < 𝐷)
12 modqlt 9889 . . . 4 ((𝑁 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝑁 mod 𝐷) < 𝐷)
137, 9, 11, 12syl3anc 1181 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < 𝐷)
14 nnre 8527 . . . . 5 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
1514adantl 272 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℝ)
16 0red 7586 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ∈ ℝ)
1716, 15, 11ltled 7699 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ≤ 𝐷)
1815, 17absidd 10731 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (abs‘𝐷) = 𝐷)
1913, 18breqtrrd 3893 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < (abs‘𝐷))
201nn0cnd 8826 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℂ)
214zcnd 8968 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℂ)
22 simpr 109 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℕ)
2322nncnd 8534 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2421, 23mulcld 7605 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((⌊‘(𝑁 / 𝐷)) · 𝐷) ∈ ℂ)
25 modqvalr 9881 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝑁 mod 𝐷) = (𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
267, 9, 11, 25syl3anc 1181 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
2726oveq1d 5705 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 mod 𝐷) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)) = ((𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
28 simpl 108 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℤ)
2928zcnd 8968 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℂ)
3029, 24npcand 7894 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)) = 𝑁)
3127, 30eqtr2d 2128 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 = ((𝑁 mod 𝐷) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
3220, 24, 31comraddd 7736 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))
33 breq2 3871 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (0 ≤ 𝑟 ↔ 0 ≤ (𝑁 mod 𝐷)))
34 breq1 3870 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (𝑟 < (abs‘𝐷) ↔ (𝑁 mod 𝐷) < (abs‘𝐷)))
35 oveq2 5698 . . . . 5 (𝑟 = (𝑁 mod 𝐷) → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)))
3635eqeq2d 2106 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷))))
3733, 34, 363anbi123d 1255 . . 3 (𝑟 = (𝑁 mod 𝐷) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)))))
38 oveq1 5697 . . . . . 6 (𝑞 = (⌊‘(𝑁 / 𝐷)) → (𝑞 · 𝐷) = ((⌊‘(𝑁 / 𝐷)) · 𝐷))
3938oveq1d 5705 . . . . 5 (𝑞 = (⌊‘(𝑁 / 𝐷)) → ((𝑞 · 𝐷) + (𝑁 mod 𝐷)) = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))
4039eqeq2d 2106 . . . 4 (𝑞 = (⌊‘(𝑁 / 𝐷)) → (𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)) ↔ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷))))
41403anbi3d 1261 . . 3 (𝑞 = (⌊‘(𝑁 / 𝐷)) → ((0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷))) ↔ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))))
4237, 41rspc2ev 2750 . 2 (((𝑁 mod 𝐷) ∈ ℤ ∧ (⌊‘(𝑁 / 𝐷)) ∈ ℤ ∧ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
432, 4, 5, 19, 32, 42syl113anc 1193 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 927   = wceq 1296  wcel 1445  wrex 2371   class class class wbr 3867  cfv 5049  (class class class)co 5690  cr 7446  0cc0 7447   + caddc 7450   · cmul 7452   < clt 7619  cle 7620  cmin 7750   / cdiv 8236  cn 8520  cz 8848  cq 9203  cfl 9824   mod cmo 9878  abscabs 10561
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-fl 9826  df-mod 9879  df-iseq 10002  df-seq3 10003  df-exp 10086  df-cj 10407  df-re 10408  df-im 10409  df-rsqrt 10562  df-abs 10563
This theorem is referenced by:  divalglemeunn  11363  divalglemex  11364
  Copyright terms: Public domain W3C validator