ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnn GIF version

Theorem divalglemnn 12062
Description: Lemma for divalg 12068. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemnn ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalglemnn
StepHypRef Expression
1 zmodcl 10418 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℕ0)
21nn0zd 9440 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℤ)
3 znq 9692 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℚ)
43flqcld 10349 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℤ)
51nn0ge0d 9299 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ≤ (𝑁 mod 𝐷))
6 zq 9694 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
76adantr 276 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℚ)
8 nnq 9701 . . . . 5 (𝐷 ∈ ℕ → 𝐷 ∈ ℚ)
98adantl 277 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℚ)
10 nngt0 9009 . . . . 5 (𝐷 ∈ ℕ → 0 < 𝐷)
1110adantl 277 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 < 𝐷)
12 modqlt 10407 . . . 4 ((𝑁 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝑁 mod 𝐷) < 𝐷)
137, 9, 11, 12syl3anc 1249 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < 𝐷)
14 nnre 8991 . . . . 5 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
1514adantl 277 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℝ)
16 0red 8022 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ∈ ℝ)
1716, 15, 11ltled 8140 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ≤ 𝐷)
1815, 17absidd 11314 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (abs‘𝐷) = 𝐷)
1913, 18breqtrrd 4058 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < (abs‘𝐷))
201nn0cnd 9298 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℂ)
214zcnd 9443 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℂ)
22 simpr 110 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℕ)
2322nncnd 8998 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2421, 23mulcld 8042 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((⌊‘(𝑁 / 𝐷)) · 𝐷) ∈ ℂ)
25 modqvalr 10399 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝑁 mod 𝐷) = (𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
267, 9, 11, 25syl3anc 1249 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
2726oveq1d 5934 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 mod 𝐷) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)) = ((𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
28 simpl 109 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℤ)
2928zcnd 9443 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℂ)
3029, 24npcand 8336 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)) = 𝑁)
3127, 30eqtr2d 2227 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 = ((𝑁 mod 𝐷) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
3220, 24, 31comraddd 8178 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))
33 breq2 4034 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (0 ≤ 𝑟 ↔ 0 ≤ (𝑁 mod 𝐷)))
34 breq1 4033 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (𝑟 < (abs‘𝐷) ↔ (𝑁 mod 𝐷) < (abs‘𝐷)))
35 oveq2 5927 . . . . 5 (𝑟 = (𝑁 mod 𝐷) → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)))
3635eqeq2d 2205 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷))))
3733, 34, 363anbi123d 1323 . . 3 (𝑟 = (𝑁 mod 𝐷) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)))))
38 oveq1 5926 . . . . . 6 (𝑞 = (⌊‘(𝑁 / 𝐷)) → (𝑞 · 𝐷) = ((⌊‘(𝑁 / 𝐷)) · 𝐷))
3938oveq1d 5934 . . . . 5 (𝑞 = (⌊‘(𝑁 / 𝐷)) → ((𝑞 · 𝐷) + (𝑁 mod 𝐷)) = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))
4039eqeq2d 2205 . . . 4 (𝑞 = (⌊‘(𝑁 / 𝐷)) → (𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)) ↔ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷))))
41403anbi3d 1329 . . 3 (𝑞 = (⌊‘(𝑁 / 𝐷)) → ((0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷))) ↔ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))))
4237, 41rspc2ev 2880 . 2 (((𝑁 mod 𝐷) ∈ ℤ ∧ (⌊‘(𝑁 / 𝐷)) ∈ ℤ ∧ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
432, 4, 5, 19, 32, 42syl113anc 1261 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4030  cfv 5255  (class class class)co 5919  cr 7873  0cc0 7874   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192   / cdiv 8693  cn 8984  cz 9320  cq 9687  cfl 10340   mod cmo 10396  abscabs 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146
This theorem is referenced by:  divalglemeunn  12065  divalglemex  12066
  Copyright terms: Public domain W3C validator