ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnn GIF version

Theorem divalglemnn 12100
Description: Lemma for divalg 12106. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemnn ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalglemnn
StepHypRef Expression
1 zmodcl 10453 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℕ0)
21nn0zd 9463 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℤ)
3 znq 9715 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℚ)
43flqcld 10384 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℤ)
51nn0ge0d 9322 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ≤ (𝑁 mod 𝐷))
6 zq 9717 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
76adantr 276 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℚ)
8 nnq 9724 . . . . 5 (𝐷 ∈ ℕ → 𝐷 ∈ ℚ)
98adantl 277 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℚ)
10 nngt0 9032 . . . . 5 (𝐷 ∈ ℕ → 0 < 𝐷)
1110adantl 277 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 < 𝐷)
12 modqlt 10442 . . . 4 ((𝑁 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝑁 mod 𝐷) < 𝐷)
137, 9, 11, 12syl3anc 1249 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < 𝐷)
14 nnre 9014 . . . . 5 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
1514adantl 277 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℝ)
16 0red 8044 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ∈ ℝ)
1716, 15, 11ltled 8162 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 ≤ 𝐷)
1815, 17absidd 11349 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (abs‘𝐷) = 𝐷)
1913, 18breqtrrd 4062 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < (abs‘𝐷))
201nn0cnd 9321 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℂ)
214zcnd 9466 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℂ)
22 simpr 110 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℕ)
2322nncnd 9021 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2421, 23mulcld 8064 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((⌊‘(𝑁 / 𝐷)) · 𝐷) ∈ ℂ)
25 modqvalr 10434 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝑁 mod 𝐷) = (𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
267, 9, 11, 25syl3anc 1249 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
2726oveq1d 5940 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 mod 𝐷) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)) = ((𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
28 simpl 109 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℤ)
2928zcnd 9466 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℂ)
3029, 24npcand 8358 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 − ((⌊‘(𝑁 / 𝐷)) · 𝐷)) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)) = 𝑁)
3127, 30eqtr2d 2230 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 = ((𝑁 mod 𝐷) + ((⌊‘(𝑁 / 𝐷)) · 𝐷)))
3220, 24, 31comraddd 8200 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))
33 breq2 4038 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (0 ≤ 𝑟 ↔ 0 ≤ (𝑁 mod 𝐷)))
34 breq1 4037 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (𝑟 < (abs‘𝐷) ↔ (𝑁 mod 𝐷) < (abs‘𝐷)))
35 oveq2 5933 . . . . 5 (𝑟 = (𝑁 mod 𝐷) → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)))
3635eqeq2d 2208 . . . 4 (𝑟 = (𝑁 mod 𝐷) → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷))))
3733, 34, 363anbi123d 1323 . . 3 (𝑟 = (𝑁 mod 𝐷) → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)))))
38 oveq1 5932 . . . . . 6 (𝑞 = (⌊‘(𝑁 / 𝐷)) → (𝑞 · 𝐷) = ((⌊‘(𝑁 / 𝐷)) · 𝐷))
3938oveq1d 5940 . . . . 5 (𝑞 = (⌊‘(𝑁 / 𝐷)) → ((𝑞 · 𝐷) + (𝑁 mod 𝐷)) = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))
4039eqeq2d 2208 . . . 4 (𝑞 = (⌊‘(𝑁 / 𝐷)) → (𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷)) ↔ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷))))
41403anbi3d 1329 . . 3 (𝑞 = (⌊‘(𝑁 / 𝐷)) → ((0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + (𝑁 mod 𝐷))) ↔ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))))
4237, 41rspc2ev 2883 . 2 (((𝑁 mod 𝐷) ∈ ℤ ∧ (⌊‘(𝑁 / 𝐷)) ∈ ℤ ∧ (0 ≤ (𝑁 mod 𝐷) ∧ (𝑁 mod 𝐷) < (abs‘𝐷) ∧ 𝑁 = (((⌊‘(𝑁 / 𝐷)) · 𝐷) + (𝑁 mod 𝐷)))) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
432, 4, 5, 19, 32, 42syl113anc 1261 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4034  cfv 5259  (class class class)co 5925  cr 7895  0cc0 7896   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214   / cdiv 8716  cn 9007  cz 9343  cq 9710  cfl 10375   mod cmo 10431  abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  divalglemeunn  12103  divalglemex  12104
  Copyright terms: Public domain W3C validator