![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mvrladdd | GIF version |
Description: Move RHS left addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
mvrraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mvrraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
mvrraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
Ref | Expression |
---|---|
mvrladdd | ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrraddd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
2 | mvrraddd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mvrraddd.3 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
4 | 2, 1, 3 | comraddd 8144 | . 2 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
5 | 1, 2, 4 | mvrraddd 8353 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 (class class class)co 5896 ℂcc 7839 + caddc 7844 − cmin 8158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-setind 4554 ax-resscn 7933 ax-1cn 7934 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-distr 7945 ax-i2m1 7946 ax-0id 7949 ax-rnegex 7950 ax-cnre 7952 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-sub 8160 |
This theorem is referenced by: dveflem 14647 tangtx 14719 |
Copyright terms: Public domain | W3C validator |