Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbeq1 | GIF version |
Description: Analog of dfsbcq 2957 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1 | ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2957 | . . 3 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐵 / 𝑥]𝑦 ∈ 𝐶)) | |
2 | 1 | abbidv 2288 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶}) |
3 | df-csb 3050 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
4 | df-csb 3050 | . 2 ⊢ ⦋𝐵 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2228 | 1 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 {cab 2156 [wsbc 2955 ⦋csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: csbeq1d 3056 csbeq1a 3058 csbiebg 3091 sbcnestgf 3100 cbvralcsf 3111 cbvrexcsf 3112 cbvreucsf 3113 cbvrabcsf 3114 csbing 3334 disjnims 3979 sbcbrg 4041 csbopabg 4065 pofun 4295 csbima12g 4970 csbiotag 5189 fvmpts 5572 fvmpt2 5577 mptfvex 5579 elfvmptrab1 5588 fmptcof 5660 fmptcos 5661 fliftfuns 5774 csbriotag 5818 csbov123g 5888 eqerlem 6540 qliftfuns 6593 summodclem2a 11331 zsumdc 11334 fsum3 11337 sumsnf 11359 sumsns 11365 fsum2dlemstep 11384 fisumcom2 11388 fsumshftm 11395 fisum0diag2 11397 fsumiun 11427 prodsnf 11542 fprodm1s 11551 fprodp1s 11552 prodsns 11553 fprod2dlemstep 11572 fprodcom2fi 11576 pcmptdvds 12284 ctiunctlemf 12380 mulcncflem 13343 |
Copyright terms: Public domain | W3C validator |