ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq1 GIF version

Theorem csbeq1 3087
Description: Analog of dfsbcq 2991 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbeq1 (𝐴 = 𝐵𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)

Proof of Theorem csbeq1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2991 . . 3 (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦𝐶[𝐵 / 𝑥]𝑦𝐶))
21abbidv 2314 . 2 (𝐴 = 𝐵 → {𝑦[𝐴 / 𝑥]𝑦𝐶} = {𝑦[𝐵 / 𝑥]𝑦𝐶})
3 df-csb 3085 . 2 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
4 df-csb 3085 . 2 𝐵 / 𝑥𝐶 = {𝑦[𝐵 / 𝑥]𝑦𝐶}
52, 3, 43eqtr4g 2254 1 (𝐴 = 𝐵𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {cab 2182  [wsbc 2989  csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-sbc 2990  df-csb 3085
This theorem is referenced by:  csbeq1d  3091  csbeq1a  3093  csbiebg  3127  sbcnestgf  3136  cbvralcsf  3147  cbvrexcsf  3148  cbvreucsf  3149  cbvrabcsf  3150  csbing  3371  disjnims  4026  sbcbrg  4088  csbopabg  4112  pofun  4348  csbima12g  5031  csbiotag  5252  fvmpts  5642  fvmpt2  5648  mptfvex  5650  elfvmptrab1  5659  fmptcof  5732  fmptcos  5733  fliftfuns  5848  csbriotag  5893  csbov123g  5964  elovmporab1w  6128  eqerlem  6632  qliftfuns  6687  summodclem2a  11565  zsumdc  11568  fsum3  11571  sumsnf  11593  sumsns  11599  fsum2dlemstep  11618  fisumcom2  11622  fsumshftm  11629  fisum0diag2  11631  fsumiun  11661  prodsnf  11776  fprodm1s  11785  fprodp1s  11786  prodsns  11787  fprod2dlemstep  11806  fprodcom2fi  11810  pcmptdvds  12541  ctiunctlemf  12682  mulcncflem  14929  fsumdvdsmul  15313
  Copyright terms: Public domain W3C validator