![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbeq1 | GIF version |
Description: Analog of dfsbcq 2987 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1 | ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2987 | . . 3 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐵 / 𝑥]𝑦 ∈ 𝐶)) | |
2 | 1 | abbidv 2311 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶}) |
3 | df-csb 3081 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
4 | df-csb 3081 | . 2 ⊢ ⦋𝐵 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {cab 2179 [wsbc 2985 ⦋csb 3080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-sbc 2986 df-csb 3081 |
This theorem is referenced by: csbeq1d 3087 csbeq1a 3089 csbiebg 3123 sbcnestgf 3132 cbvralcsf 3143 cbvrexcsf 3144 cbvreucsf 3145 cbvrabcsf 3146 csbing 3366 disjnims 4021 sbcbrg 4083 csbopabg 4107 pofun 4343 csbima12g 5026 csbiotag 5247 fvmpts 5635 fvmpt2 5641 mptfvex 5643 elfvmptrab1 5652 fmptcof 5725 fmptcos 5726 fliftfuns 5841 csbriotag 5886 csbov123g 5956 elovmporab1w 6119 eqerlem 6618 qliftfuns 6673 summodclem2a 11524 zsumdc 11527 fsum3 11530 sumsnf 11552 sumsns 11558 fsum2dlemstep 11577 fisumcom2 11581 fsumshftm 11588 fisum0diag2 11590 fsumiun 11620 prodsnf 11735 fprodm1s 11744 fprodp1s 11745 prodsns 11746 fprod2dlemstep 11765 fprodcom2fi 11769 pcmptdvds 12483 ctiunctlemf 12595 mulcncflem 14761 |
Copyright terms: Public domain | W3C validator |