| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1 | GIF version | ||
| Description: Analog of dfsbcq 2991 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbeq1 | ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 2991 | . . 3 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐵 / 𝑥]𝑦 ∈ 𝐶)) | |
| 2 | 1 | abbidv 2314 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶}) |
| 3 | df-csb 3085 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 4 | df-csb 3085 | . 2 ⊢ ⦋𝐵 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶} | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {cab 2182 [wsbc 2989 ⦋csb 3084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: csbeq1d 3091 csbeq1a 3093 csbiebg 3127 sbcnestgf 3136 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 cbvrabcsf 3150 csbing 3371 disjnims 4026 sbcbrg 4088 csbopabg 4112 pofun 4348 csbima12g 5031 csbiotag 5252 fvmpts 5642 fvmpt2 5648 mptfvex 5650 elfvmptrab1 5659 fmptcof 5732 fmptcos 5733 fliftfuns 5848 csbriotag 5893 csbov123g 5964 elovmporab1w 6128 eqerlem 6632 qliftfuns 6687 summodclem2a 11565 zsumdc 11568 fsum3 11571 sumsnf 11593 sumsns 11599 fsum2dlemstep 11618 fisumcom2 11622 fsumshftm 11629 fisum0diag2 11631 fsumiun 11661 prodsnf 11776 fprodm1s 11785 fprodp1s 11786 prodsns 11787 fprod2dlemstep 11806 fprodcom2fi 11810 pcmptdvds 12541 ctiunctlemf 12682 mulcncflem 14929 fsumdvdsmul 15313 |
| Copyright terms: Public domain | W3C validator |