![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbeq1 | GIF version |
Description: Analog of dfsbcq 2976 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1 | ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2976 | . . 3 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐵 / 𝑥]𝑦 ∈ 𝐶)) | |
2 | 1 | abbidv 2305 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶}) |
3 | df-csb 3070 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
4 | df-csb 3070 | . 2 ⊢ ⦋𝐵 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2245 | 1 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 {cab 2173 [wsbc 2974 ⦋csb 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-sbc 2975 df-csb 3070 |
This theorem is referenced by: csbeq1d 3076 csbeq1a 3078 csbiebg 3111 sbcnestgf 3120 cbvralcsf 3131 cbvrexcsf 3132 cbvreucsf 3133 cbvrabcsf 3134 csbing 3354 disjnims 4007 sbcbrg 4069 csbopabg 4093 pofun 4324 csbima12g 5001 csbiotag 5221 fvmpts 5607 fvmpt2 5612 mptfvex 5614 elfvmptrab1 5623 fmptcof 5696 fmptcos 5697 fliftfuns 5812 csbriotag 5856 csbov123g 5926 eqerlem 6580 qliftfuns 6633 summodclem2a 11403 zsumdc 11406 fsum3 11409 sumsnf 11431 sumsns 11437 fsum2dlemstep 11456 fisumcom2 11460 fsumshftm 11467 fisum0diag2 11469 fsumiun 11499 prodsnf 11614 fprodm1s 11623 fprodp1s 11624 prodsns 11625 fprod2dlemstep 11644 fprodcom2fi 11648 pcmptdvds 12357 ctiunctlemf 12453 mulcncflem 14386 |
Copyright terms: Public domain | W3C validator |