| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1 | GIF version | ||
| Description: Analog of dfsbcq 3001 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbeq1 | ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3001 | . . 3 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐵 / 𝑥]𝑦 ∈ 𝐶)) | |
| 2 | 1 | abbidv 2324 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶}) |
| 3 | df-csb 3095 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 4 | df-csb 3095 | . 2 ⊢ ⦋𝐵 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶} | |
| 5 | 2, 3, 4 | 3eqtr4g 2264 | 1 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {cab 2192 [wsbc 2999 ⦋csb 3094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-sbc 3000 df-csb 3095 |
| This theorem is referenced by: csbeq1d 3101 csbeq1a 3103 csbiebg 3137 sbcnestgf 3146 cbvralcsf 3157 cbvrexcsf 3158 cbvreucsf 3159 cbvrabcsf 3160 csbing 3381 disjnims 4038 sbcbrg 4102 csbopabg 4126 pofun 4363 csbima12g 5048 csbiotag 5269 fvmpts 5664 fvmpt2 5670 mptfvex 5672 elfvmptrab1 5681 fmptcof 5754 fmptcos 5755 fliftfuns 5874 csbriotag 5919 csbov123g 5990 elovmporab1w 6154 eqerlem 6658 qliftfuns 6713 summodclem2a 11736 zsumdc 11739 fsum3 11742 sumsnf 11764 sumsns 11770 fsum2dlemstep 11789 fisumcom2 11793 fsumshftm 11800 fisum0diag2 11802 fsumiun 11832 prodsnf 11947 fprodm1s 11956 fprodp1s 11957 prodsns 11958 fprod2dlemstep 11977 fprodcom2fi 11981 pcmptdvds 12712 ctiunctlemf 12853 mulcncflem 15123 fsumdvdsmul 15507 |
| Copyright terms: Public domain | W3C validator |