![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbeq1 | GIF version |
Description: Analog of dfsbcq 2988 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1 | ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2988 | . . 3 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐵 / 𝑥]𝑦 ∈ 𝐶)) | |
2 | 1 | abbidv 2311 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶}) |
3 | df-csb 3082 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
4 | df-csb 3082 | . 2 ⊢ ⦋𝐵 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {cab 2179 [wsbc 2986 ⦋csb 3081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-sbc 2987 df-csb 3082 |
This theorem is referenced by: csbeq1d 3088 csbeq1a 3090 csbiebg 3124 sbcnestgf 3133 cbvralcsf 3144 cbvrexcsf 3145 cbvreucsf 3146 cbvrabcsf 3147 csbing 3367 disjnims 4022 sbcbrg 4084 csbopabg 4108 pofun 4344 csbima12g 5027 csbiotag 5248 fvmpts 5636 fvmpt2 5642 mptfvex 5644 elfvmptrab1 5653 fmptcof 5726 fmptcos 5727 fliftfuns 5842 csbriotag 5887 csbov123g 5957 elovmporab1w 6121 eqerlem 6620 qliftfuns 6675 summodclem2a 11527 zsumdc 11530 fsum3 11533 sumsnf 11555 sumsns 11561 fsum2dlemstep 11580 fisumcom2 11584 fsumshftm 11591 fisum0diag2 11593 fsumiun 11623 prodsnf 11738 fprodm1s 11747 fprodp1s 11748 prodsns 11749 fprod2dlemstep 11768 fprodcom2fi 11772 pcmptdvds 12486 ctiunctlemf 12598 mulcncflem 14786 |
Copyright terms: Public domain | W3C validator |