![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbeq1 | GIF version |
Description: Analog of dfsbcq 2979 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1 | ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2979 | . . 3 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐵 / 𝑥]𝑦 ∈ 𝐶)) | |
2 | 1 | abbidv 2307 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶}) |
3 | df-csb 3073 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
4 | df-csb 3073 | . 2 ⊢ ⦋𝐵 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2247 | 1 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 {cab 2175 [wsbc 2977 ⦋csb 3072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-sbc 2978 df-csb 3073 |
This theorem is referenced by: csbeq1d 3079 csbeq1a 3081 csbiebg 3114 sbcnestgf 3123 cbvralcsf 3134 cbvrexcsf 3135 cbvreucsf 3136 cbvrabcsf 3137 csbing 3357 disjnims 4010 sbcbrg 4072 csbopabg 4096 pofun 4327 csbima12g 5004 csbiotag 5225 fvmpts 5611 fvmpt2 5616 mptfvex 5618 elfvmptrab1 5627 fmptcof 5700 fmptcos 5701 fliftfuns 5816 csbriotag 5860 csbov123g 5930 eqerlem 6585 qliftfuns 6638 summodclem2a 11409 zsumdc 11412 fsum3 11415 sumsnf 11437 sumsns 11443 fsum2dlemstep 11462 fisumcom2 11466 fsumshftm 11473 fisum0diag2 11475 fsumiun 11505 prodsnf 11620 fprodm1s 11629 fprodp1s 11630 prodsns 11631 fprod2dlemstep 11650 fprodcom2fi 11654 pcmptdvds 12363 ctiunctlemf 12464 mulcncflem 14502 |
Copyright terms: Public domain | W3C validator |