![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbeq1 | GIF version |
Description: Analog of dfsbcq 2965 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1 | ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2965 | . . 3 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐵 / 𝑥]𝑦 ∈ 𝐶)) | |
2 | 1 | abbidv 2295 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶}) |
3 | df-csb 3059 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
4 | df-csb 3059 | . 2 ⊢ ⦋𝐵 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2235 | 1 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 {cab 2163 [wsbc 2963 ⦋csb 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-sbc 2964 df-csb 3059 |
This theorem is referenced by: csbeq1d 3065 csbeq1a 3067 csbiebg 3100 sbcnestgf 3109 cbvralcsf 3120 cbvrexcsf 3121 cbvreucsf 3122 cbvrabcsf 3123 csbing 3343 disjnims 3996 sbcbrg 4058 csbopabg 4082 pofun 4313 csbima12g 4990 csbiotag 5210 fvmpts 5595 fvmpt2 5600 mptfvex 5602 elfvmptrab1 5611 fmptcof 5684 fmptcos 5685 fliftfuns 5799 csbriotag 5843 csbov123g 5913 eqerlem 6566 qliftfuns 6619 summodclem2a 11389 zsumdc 11392 fsum3 11395 sumsnf 11417 sumsns 11423 fsum2dlemstep 11442 fisumcom2 11446 fsumshftm 11453 fisum0diag2 11455 fsumiun 11485 prodsnf 11600 fprodm1s 11609 fprodp1s 11610 prodsns 11611 fprod2dlemstep 11630 fprodcom2fi 11634 pcmptdvds 12343 ctiunctlemf 12439 mulcncflem 14093 |
Copyright terms: Public domain | W3C validator |