Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbeq1 | GIF version |
Description: Analog of dfsbcq 2953 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1 | ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2953 | . . 3 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐵 / 𝑥]𝑦 ∈ 𝐶)) | |
2 | 1 | abbidv 2284 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶}) |
3 | df-csb 3046 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
4 | df-csb 3046 | . 2 ⊢ ⦋𝐵 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐵 / 𝑥]𝑦 ∈ 𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2224 | 1 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 {cab 2151 [wsbc 2951 ⦋csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: csbeq1d 3052 csbeq1a 3054 csbiebg 3087 sbcnestgf 3096 cbvralcsf 3107 cbvrexcsf 3108 cbvreucsf 3109 cbvrabcsf 3110 csbing 3329 disjnims 3974 sbcbrg 4036 csbopabg 4060 pofun 4290 csbima12g 4965 csbiotag 5181 fvmpts 5564 fvmpt2 5569 mptfvex 5571 elfvmptrab1 5580 fmptcof 5652 fmptcos 5653 fliftfuns 5766 csbriotag 5810 csbov123g 5880 eqerlem 6532 qliftfuns 6585 summodclem2a 11322 zsumdc 11325 fsum3 11328 sumsnf 11350 sumsns 11356 fsum2dlemstep 11375 fisumcom2 11379 fsumshftm 11386 fisum0diag2 11388 fsumiun 11418 prodsnf 11533 fprodm1s 11542 fprodp1s 11543 prodsns 11544 fprod2dlemstep 11563 fprodcom2fi 11567 pcmptdvds 12275 ctiunctlemf 12371 mulcncflem 13230 |
Copyright terms: Public domain | W3C validator |