![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1fin | GIF version |
Description: Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.) |
Ref | Expression |
---|---|
pw1fin | ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidpweq 6967 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
2 | 1 | biimpi 120 | . . 3 ⊢ (EXMID → 𝒫 1o = 2o) |
3 | 2onn 6576 | . . . 4 ⊢ 2o ∈ ω | |
4 | nnfi 6930 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2o ∈ Fin |
6 | 2, 5 | eqeltrdi 2284 | . 2 ⊢ (EXMID → 𝒫 1o ∈ Fin) |
7 | df1o2 6484 | . . . . . 6 ⊢ 1o = {∅} | |
8 | 7 | sseq2i 3207 | . . . . 5 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
9 | velpw 3609 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
10 | 1oex 6479 | . . . . . . . 8 ⊢ 1o ∈ V | |
11 | 10 | pwid 3617 | . . . . . . 7 ⊢ 1o ∈ 𝒫 1o |
12 | fidceq 6927 | . . . . . . 7 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o ∧ 1o ∈ 𝒫 1o) → DECID 𝑥 = 1o) | |
13 | 11, 12 | mp3an3 1337 | . . . . . 6 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o) → DECID 𝑥 = 1o) |
14 | 9, 13 | sylan2br 288 | . . . . 5 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ 1o) → DECID 𝑥 = 1o) |
15 | 8, 14 | sylan2br 288 | . . . 4 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = 1o) |
16 | 7 | eqeq2i 2204 | . . . . 5 ⊢ (𝑥 = 1o ↔ 𝑥 = {∅}) |
17 | 16 | dcbii 841 | . . . 4 ⊢ (DECID 𝑥 = 1o ↔ DECID 𝑥 = {∅}) |
18 | 15, 17 | sylib 122 | . . 3 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) |
19 | 18 | exmid1dc 4230 | . 2 ⊢ (𝒫 1o ∈ Fin → EXMID) |
20 | 6, 19 | impbii 126 | 1 ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ⊆ wss 3154 ∅c0 3447 𝒫 cpw 3602 {csn 3619 EXMIDwem 4224 ωcom 4623 1oc1o 6464 2oc2o 6465 Fincfn 6796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-tr 4129 df-exmid 4225 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1o 6471 df-2o 6472 df-en 6797 df-fin 6799 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |