| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1fin | GIF version | ||
| Description: Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| pw1fin | ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidpweq 7079 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (EXMID → 𝒫 1o = 2o) |
| 3 | 2onn 6675 | . . . 4 ⊢ 2o ∈ ω | |
| 4 | nnfi 7042 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2o ∈ Fin |
| 6 | 2, 5 | eqeltrdi 2320 | . 2 ⊢ (EXMID → 𝒫 1o ∈ Fin) |
| 7 | df1o2 6582 | . . . . . 6 ⊢ 1o = {∅} | |
| 8 | 7 | sseq2i 3251 | . . . . 5 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
| 9 | velpw 3656 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
| 10 | 1oex 6576 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 11 | 10 | pwid 3664 | . . . . . . 7 ⊢ 1o ∈ 𝒫 1o |
| 12 | fidceq 7039 | . . . . . . 7 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o ∧ 1o ∈ 𝒫 1o) → DECID 𝑥 = 1o) | |
| 13 | 11, 12 | mp3an3 1360 | . . . . . 6 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o) → DECID 𝑥 = 1o) |
| 14 | 9, 13 | sylan2br 288 | . . . . 5 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ 1o) → DECID 𝑥 = 1o) |
| 15 | 8, 14 | sylan2br 288 | . . . 4 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = 1o) |
| 16 | 7 | eqeq2i 2240 | . . . . 5 ⊢ (𝑥 = 1o ↔ 𝑥 = {∅}) |
| 17 | 16 | dcbii 845 | . . . 4 ⊢ (DECID 𝑥 = 1o ↔ DECID 𝑥 = {∅}) |
| 18 | 15, 17 | sylib 122 | . . 3 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) |
| 19 | 18 | exmid1dc 4284 | . 2 ⊢ (𝒫 1o ∈ Fin → EXMID) |
| 20 | 6, 19 | impbii 126 | 1 ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 {csn 3666 EXMIDwem 4278 ωcom 4682 1oc1o 6561 2oc2o 6562 Fincfn 6895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-tr 4183 df-exmid 4279 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1o 6568 df-2o 6569 df-en 6896 df-fin 6898 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |