Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1fin | GIF version |
Description: Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.) |
Ref | Expression |
---|---|
pw1fin | ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidpweq 6875 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (EXMID → 𝒫 1o = 2o) |
3 | 2onn 6489 | . . . 4 ⊢ 2o ∈ ω | |
4 | nnfi 6838 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2o ∈ Fin |
6 | 2, 5 | eqeltrdi 2257 | . 2 ⊢ (EXMID → 𝒫 1o ∈ Fin) |
7 | df1o2 6397 | . . . . . 6 ⊢ 1o = {∅} | |
8 | 7 | sseq2i 3169 | . . . . 5 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
9 | velpw 3566 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
10 | 1oex 6392 | . . . . . . . 8 ⊢ 1o ∈ V | |
11 | 10 | pwid 3574 | . . . . . . 7 ⊢ 1o ∈ 𝒫 1o |
12 | fidceq 6835 | . . . . . . 7 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o ∧ 1o ∈ 𝒫 1o) → DECID 𝑥 = 1o) | |
13 | 11, 12 | mp3an3 1316 | . . . . . 6 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o) → DECID 𝑥 = 1o) |
14 | 9, 13 | sylan2br 286 | . . . . 5 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ 1o) → DECID 𝑥 = 1o) |
15 | 8, 14 | sylan2br 286 | . . . 4 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = 1o) |
16 | 7 | eqeq2i 2176 | . . . . 5 ⊢ (𝑥 = 1o ↔ 𝑥 = {∅}) |
17 | 16 | dcbii 830 | . . . 4 ⊢ (DECID 𝑥 = 1o ↔ DECID 𝑥 = {∅}) |
18 | 15, 17 | sylib 121 | . . 3 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) |
19 | 18 | exmid1dc 4179 | . 2 ⊢ (𝒫 1o ∈ Fin → EXMID) |
20 | 6, 19 | impbii 125 | 1 ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 ∅c0 3409 𝒫 cpw 3559 {csn 3576 EXMIDwem 4173 ωcom 4567 1oc1o 6377 2oc2o 6378 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-exmid 4174 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-2o 6385 df-en 6707 df-fin 6709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |