Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1fin | GIF version |
Description: Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.) |
Ref | Expression |
---|---|
pw1fin | ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidpweq 6887 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (EXMID → 𝒫 1o = 2o) |
3 | 2onn 6500 | . . . 4 ⊢ 2o ∈ ω | |
4 | nnfi 6850 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2o ∈ Fin |
6 | 2, 5 | eqeltrdi 2261 | . 2 ⊢ (EXMID → 𝒫 1o ∈ Fin) |
7 | df1o2 6408 | . . . . . 6 ⊢ 1o = {∅} | |
8 | 7 | sseq2i 3174 | . . . . 5 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
9 | velpw 3573 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
10 | 1oex 6403 | . . . . . . . 8 ⊢ 1o ∈ V | |
11 | 10 | pwid 3581 | . . . . . . 7 ⊢ 1o ∈ 𝒫 1o |
12 | fidceq 6847 | . . . . . . 7 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o ∧ 1o ∈ 𝒫 1o) → DECID 𝑥 = 1o) | |
13 | 11, 12 | mp3an3 1321 | . . . . . 6 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o) → DECID 𝑥 = 1o) |
14 | 9, 13 | sylan2br 286 | . . . . 5 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ 1o) → DECID 𝑥 = 1o) |
15 | 8, 14 | sylan2br 286 | . . . 4 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = 1o) |
16 | 7 | eqeq2i 2181 | . . . . 5 ⊢ (𝑥 = 1o ↔ 𝑥 = {∅}) |
17 | 16 | dcbii 835 | . . . 4 ⊢ (DECID 𝑥 = 1o ↔ DECID 𝑥 = {∅}) |
18 | 15, 17 | sylib 121 | . . 3 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) |
19 | 18 | exmid1dc 4186 | . 2 ⊢ (𝒫 1o ∈ Fin → EXMID) |
20 | 6, 19 | impbii 125 | 1 ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 ∅c0 3414 𝒫 cpw 3566 {csn 3583 EXMIDwem 4180 ωcom 4574 1oc1o 6388 2oc2o 6389 Fincfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-exmid 4181 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1o 6395 df-2o 6396 df-en 6719 df-fin 6721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |