ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1fin GIF version

Theorem pw1fin 6912
Description: Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
Assertion
Ref Expression
pw1fin (EXMID ↔ 𝒫 1o ∈ Fin)

Proof of Theorem pw1fin
StepHypRef Expression
1 exmidpweq 6911 . . . 4 (EXMID ↔ 𝒫 1o = 2o)
21biimpi 120 . . 3 (EXMID → 𝒫 1o = 2o)
3 2onn 6524 . . . 4 2o ∈ ω
4 nnfi 6874 . . . 4 (2o ∈ ω → 2o ∈ Fin)
53, 4ax-mp 5 . . 3 2o ∈ Fin
62, 5eqeltrdi 2268 . 2 (EXMID → 𝒫 1o ∈ Fin)
7 df1o2 6432 . . . . . 6 1o = {∅}
87sseq2i 3184 . . . . 5 (𝑥 ⊆ 1o𝑥 ⊆ {∅})
9 velpw 3584 . . . . . 6 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
10 1oex 6427 . . . . . . . 8 1o ∈ V
1110pwid 3592 . . . . . . 7 1o ∈ 𝒫 1o
12 fidceq 6871 . . . . . . 7 ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o ∧ 1o ∈ 𝒫 1o) → DECID 𝑥 = 1o)
1311, 12mp3an3 1326 . . . . . 6 ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o) → DECID 𝑥 = 1o)
149, 13sylan2br 288 . . . . 5 ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ 1o) → DECID 𝑥 = 1o)
158, 14sylan2br 288 . . . 4 ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = 1o)
167eqeq2i 2188 . . . . 5 (𝑥 = 1o𝑥 = {∅})
1716dcbii 840 . . . 4 (DECID 𝑥 = 1oDECID 𝑥 = {∅})
1815, 17sylib 122 . . 3 ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅})
1918exmid1dc 4202 . 2 (𝒫 1o ∈ Fin → EXMID)
206, 19impbii 126 1 (EXMID ↔ 𝒫 1o ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wss 3131  c0 3424  𝒫 cpw 3577  {csn 3594  EXMIDwem 4196  ωcom 4591  1oc1o 6412  2oc2o 6413  Fincfn 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-tr 4104  df-exmid 4197  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1o 6419  df-2o 6420  df-en 6743  df-fin 6745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator