ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1fin GIF version

Theorem pw1fin 7019
Description: Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
Assertion
Ref Expression
pw1fin (EXMID ↔ 𝒫 1o ∈ Fin)

Proof of Theorem pw1fin
StepHypRef Expression
1 exmidpweq 7018 . . . 4 (EXMID ↔ 𝒫 1o = 2o)
21biimpi 120 . . 3 (EXMID → 𝒫 1o = 2o)
3 2onn 6617 . . . 4 2o ∈ ω
4 nnfi 6981 . . . 4 (2o ∈ ω → 2o ∈ Fin)
53, 4ax-mp 5 . . 3 2o ∈ Fin
62, 5eqeltrdi 2297 . 2 (EXMID → 𝒫 1o ∈ Fin)
7 df1o2 6525 . . . . . 6 1o = {∅}
87sseq2i 3222 . . . . 5 (𝑥 ⊆ 1o𝑥 ⊆ {∅})
9 velpw 3625 . . . . . 6 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
10 1oex 6520 . . . . . . . 8 1o ∈ V
1110pwid 3633 . . . . . . 7 1o ∈ 𝒫 1o
12 fidceq 6978 . . . . . . 7 ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o ∧ 1o ∈ 𝒫 1o) → DECID 𝑥 = 1o)
1311, 12mp3an3 1339 . . . . . 6 ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o) → DECID 𝑥 = 1o)
149, 13sylan2br 288 . . . . 5 ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ 1o) → DECID 𝑥 = 1o)
158, 14sylan2br 288 . . . 4 ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = 1o)
167eqeq2i 2217 . . . . 5 (𝑥 = 1o𝑥 = {∅})
1716dcbii 842 . . . 4 (DECID 𝑥 = 1oDECID 𝑥 = {∅})
1815, 17sylib 122 . . 3 ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅})
1918exmid1dc 4249 . 2 (𝒫 1o ∈ Fin → EXMID)
206, 19impbii 126 1 (EXMID ↔ 𝒫 1o ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wss 3168  c0 3462  𝒫 cpw 3618  {csn 3635  EXMIDwem 4243  ωcom 4643  1oc1o 6505  2oc2o 6506  Fincfn 6837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-tr 4148  df-exmid 4244  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-1o 6512  df-2o 6513  df-en 6838  df-fin 6840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator