Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1fin | GIF version |
Description: Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.) |
Ref | Expression |
---|---|
pw1fin | ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidpweq 6847 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (EXMID → 𝒫 1o = 2o) |
3 | 2onn 6461 | . . . 4 ⊢ 2o ∈ ω | |
4 | nnfi 6810 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2o ∈ Fin |
6 | 2, 5 | eqeltrdi 2248 | . 2 ⊢ (EXMID → 𝒫 1o ∈ Fin) |
7 | df1o2 6370 | . . . . . 6 ⊢ 1o = {∅} | |
8 | 7 | sseq2i 3155 | . . . . 5 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
9 | velpw 3550 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
10 | 1oex 6365 | . . . . . . . 8 ⊢ 1o ∈ V | |
11 | 10 | pwid 3558 | . . . . . . 7 ⊢ 1o ∈ 𝒫 1o |
12 | fidceq 6807 | . . . . . . 7 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o ∧ 1o ∈ 𝒫 1o) → DECID 𝑥 = 1o) | |
13 | 11, 12 | mp3an3 1308 | . . . . . 6 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o) → DECID 𝑥 = 1o) |
14 | 9, 13 | sylan2br 286 | . . . . 5 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ 1o) → DECID 𝑥 = 1o) |
15 | 8, 14 | sylan2br 286 | . . . 4 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = 1o) |
16 | 7 | eqeq2i 2168 | . . . . 5 ⊢ (𝑥 = 1o ↔ 𝑥 = {∅}) |
17 | 16 | dcbii 826 | . . . 4 ⊢ (DECID 𝑥 = 1o ↔ DECID 𝑥 = {∅}) |
18 | 15, 17 | sylib 121 | . . 3 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) |
19 | 18 | exmid1dc 4160 | . 2 ⊢ (𝒫 1o ∈ Fin → EXMID) |
20 | 6, 19 | impbii 125 | 1 ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 DECID wdc 820 = wceq 1335 ∈ wcel 2128 ⊆ wss 3102 ∅c0 3394 𝒫 cpw 3543 {csn 3560 EXMIDwem 4154 ωcom 4547 1oc1o 6350 2oc2o 6351 Fincfn 6678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-tr 4063 df-exmid 4155 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-1o 6357 df-2o 6358 df-en 6679 df-fin 6681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |