![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1fin | GIF version |
Description: Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.) |
Ref | Expression |
---|---|
pw1fin | ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidpweq 6911 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
2 | 1 | biimpi 120 | . . 3 ⊢ (EXMID → 𝒫 1o = 2o) |
3 | 2onn 6524 | . . . 4 ⊢ 2o ∈ ω | |
4 | nnfi 6874 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2o ∈ Fin |
6 | 2, 5 | eqeltrdi 2268 | . 2 ⊢ (EXMID → 𝒫 1o ∈ Fin) |
7 | df1o2 6432 | . . . . . 6 ⊢ 1o = {∅} | |
8 | 7 | sseq2i 3184 | . . . . 5 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
9 | velpw 3584 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
10 | 1oex 6427 | . . . . . . . 8 ⊢ 1o ∈ V | |
11 | 10 | pwid 3592 | . . . . . . 7 ⊢ 1o ∈ 𝒫 1o |
12 | fidceq 6871 | . . . . . . 7 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o ∧ 1o ∈ 𝒫 1o) → DECID 𝑥 = 1o) | |
13 | 11, 12 | mp3an3 1326 | . . . . . 6 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o) → DECID 𝑥 = 1o) |
14 | 9, 13 | sylan2br 288 | . . . . 5 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ 1o) → DECID 𝑥 = 1o) |
15 | 8, 14 | sylan2br 288 | . . . 4 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = 1o) |
16 | 7 | eqeq2i 2188 | . . . . 5 ⊢ (𝑥 = 1o ↔ 𝑥 = {∅}) |
17 | 16 | dcbii 840 | . . . 4 ⊢ (DECID 𝑥 = 1o ↔ DECID 𝑥 = {∅}) |
18 | 15, 17 | sylib 122 | . . 3 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) |
19 | 18 | exmid1dc 4202 | . 2 ⊢ (𝒫 1o ∈ Fin → EXMID) |
20 | 6, 19 | impbii 126 | 1 ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 ∅c0 3424 𝒫 cpw 3577 {csn 3594 EXMIDwem 4196 ωcom 4591 1oc1o 6412 2oc2o 6413 Fincfn 6742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-tr 4104 df-exmid 4197 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1o 6419 df-2o 6420 df-en 6743 df-fin 6745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |