| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1fin | GIF version | ||
| Description: Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| pw1fin | ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidpweq 6970 | . . . 4 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (EXMID → 𝒫 1o = 2o) |
| 3 | 2onn 6579 | . . . 4 ⊢ 2o ∈ ω | |
| 4 | nnfi 6933 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2o ∈ Fin |
| 6 | 2, 5 | eqeltrdi 2287 | . 2 ⊢ (EXMID → 𝒫 1o ∈ Fin) |
| 7 | df1o2 6487 | . . . . . 6 ⊢ 1o = {∅} | |
| 8 | 7 | sseq2i 3210 | . . . . 5 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
| 9 | velpw 3612 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 1o ↔ 𝑥 ⊆ 1o) | |
| 10 | 1oex 6482 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 11 | 10 | pwid 3620 | . . . . . . 7 ⊢ 1o ∈ 𝒫 1o |
| 12 | fidceq 6930 | . . . . . . 7 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o ∧ 1o ∈ 𝒫 1o) → DECID 𝑥 = 1o) | |
| 13 | 11, 12 | mp3an3 1337 | . . . . . 6 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ∈ 𝒫 1o) → DECID 𝑥 = 1o) |
| 14 | 9, 13 | sylan2br 288 | . . . . 5 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ 1o) → DECID 𝑥 = 1o) |
| 15 | 8, 14 | sylan2br 288 | . . . 4 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = 1o) |
| 16 | 7 | eqeq2i 2207 | . . . . 5 ⊢ (𝑥 = 1o ↔ 𝑥 = {∅}) |
| 17 | 16 | dcbii 841 | . . . 4 ⊢ (DECID 𝑥 = 1o ↔ DECID 𝑥 = {∅}) |
| 18 | 15, 17 | sylib 122 | . . 3 ⊢ ((𝒫 1o ∈ Fin ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) |
| 19 | 18 | exmid1dc 4233 | . 2 ⊢ (𝒫 1o ∈ Fin → EXMID) |
| 20 | 6, 19 | impbii 126 | 1 ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3450 𝒫 cpw 3605 {csn 3622 EXMIDwem 4227 ωcom 4626 1oc1o 6467 2oc2o 6468 Fincfn 6799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-tr 4132 df-exmid 4228 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1o 6474 df-2o 6475 df-en 6800 df-fin 6802 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |