Step | Hyp | Ref
| Expression |
1 | | suceq 4380 |
. . . . . 6
⊢ (𝑤 = ∅ → suc 𝑤 = suc ∅) |
2 | 1 | raleqdv 2667 |
. . . . 5
⊢ (𝑤 = ∅ → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑘 ∈ suc
∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
3 | 2 | dcbid 828 |
. . . 4
⊢ (𝑤 = ∅ →
(DECID ∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ DECID ∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
4 | 3 | imbi2d 229 |
. . 3
⊢ (𝑤 = ∅ → ((𝑄 ∈ (2o
↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o)
↔ (𝑄 ∈
(2o ↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o))) |
5 | | suceq 4380 |
. . . . . 6
⊢ (𝑤 = 𝑗 → suc 𝑤 = suc 𝑗) |
6 | 5 | raleqdv 2667 |
. . . . 5
⊢ (𝑤 = 𝑗 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑘 ∈ suc
𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
7 | 6 | dcbid 828 |
. . . 4
⊢ (𝑤 = 𝑗 → (DECID ∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ DECID ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
8 | 7 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑗 → ((𝑄 ∈ (2o
↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o)
↔ (𝑄 ∈
(2o ↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o))) |
9 | | suceq 4380 |
. . . . . 6
⊢ (𝑤 = suc 𝑗 → suc 𝑤 = suc suc 𝑗) |
10 | 9 | raleqdv 2667 |
. . . . 5
⊢ (𝑤 = suc 𝑗 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑘 ∈ suc
suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
11 | 10 | dcbid 828 |
. . . 4
⊢ (𝑤 = suc 𝑗 → (DECID ∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ DECID ∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
12 | 11 | imbi2d 229 |
. . 3
⊢ (𝑤 = suc 𝑗 → ((𝑄 ∈ (2o
↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o)
↔ (𝑄 ∈
(2o ↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o))) |
13 | | suceq 4380 |
. . . . . 6
⊢ (𝑤 = 𝑁 → suc 𝑤 = suc 𝑁) |
14 | 13 | raleqdv 2667 |
. . . . 5
⊢ (𝑤 = 𝑁 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑘 ∈ suc
𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
15 | 14 | dcbid 828 |
. . . 4
⊢ (𝑤 = 𝑁 → (DECID ∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ DECID ∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
16 | 15 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝑄 ∈ (2o
↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o)
↔ (𝑄 ∈
(2o ↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o))) |
17 | | elmapi 6636 |
. . . . . . 7
⊢ (𝑄 ∈ (2o
↑𝑚 ℕ∞) → 𝑄:ℕ∞⟶2o) |
18 | | peano1 4571 |
. . . . . . . 8
⊢ ∅
∈ ω |
19 | | nnnninf 7090 |
. . . . . . . 8
⊢ (∅
∈ ω → (𝑖
∈ ω ↦ if(𝑖
∈ ∅, 1o, ∅)) ∈
ℕ∞) |
20 | 18, 19 | mp1i 10 |
. . . . . . 7
⊢ (𝑄 ∈ (2o
↑𝑚 ℕ∞) → (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅)) ∈ ℕ∞) |
21 | 17, 20 | ffvelrnd 5621 |
. . . . . 6
⊢ (𝑄 ∈ (2o
↑𝑚 ℕ∞) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
∈ 2o) |
22 | | 2onn 6489 |
. . . . . 6
⊢
2o ∈ ω |
23 | | elnn 4583 |
. . . . . 6
⊢ (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
∈ 2o ∧ 2o ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
∈ ω) |
24 | 21, 22, 23 | sylancl 410 |
. . . . 5
⊢ (𝑄 ∈ (2o
↑𝑚 ℕ∞) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
∈ ω) |
25 | | 1onn 6488 |
. . . . 5
⊢
1o ∈ ω |
26 | | nndceq 6467 |
. . . . 5
⊢ (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
∈ ω ∧ 1o ∈ ω) → DECID
(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))) = 1o) |
27 | 24, 25, 26 | sylancl 410 |
. . . 4
⊢ (𝑄 ∈ (2o
↑𝑚 ℕ∞) →
DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) =
1o) |
28 | | suc0 4389 |
. . . . . . 7
⊢ suc
∅ = {∅} |
29 | 28 | raleqi 2665 |
. . . . . 6
⊢
(∀𝑘 ∈
suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑘 ∈
{∅} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
30 | | 0ex 4109 |
. . . . . . 7
⊢ ∅
∈ V |
31 | | eleq2 2230 |
. . . . . . . . . . 11
⊢ (𝑘 = ∅ → (𝑖 ∈ 𝑘 ↔ 𝑖 ∈ ∅)) |
32 | 31 | ifbid 3541 |
. . . . . . . . . 10
⊢ (𝑘 = ∅ → if(𝑖 ∈ 𝑘, 1o, ∅) = if(𝑖 ∈ ∅, 1o,
∅)) |
33 | 32 | mpteq2dv 4073 |
. . . . . . . . 9
⊢ (𝑘 = ∅ → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))) |
34 | 33 | fveq2d 5490 |
. . . . . . . 8
⊢ (𝑘 = ∅ → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅)))) |
35 | 34 | eqeq1d 2174 |
. . . . . . 7
⊢ (𝑘 = ∅ → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))) = 1o)) |
36 | 30, 35 | ralsn 3619 |
. . . . . 6
⊢
(∀𝑘 ∈
{∅} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))) = 1o) |
37 | 29, 36 | bitri 183 |
. . . . 5
⊢
(∀𝑘 ∈
suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))) = 1o) |
38 | 37 | dcbii 830 |
. . . 4
⊢
(DECID ∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) =
1o) |
39 | 27, 38 | sylibr 133 |
. . 3
⊢ (𝑄 ∈ (2o
↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
40 | 17 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) → 𝑄:ℕ∞⟶2o) |
41 | | peano2 4572 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ω → suc 𝑗 ∈
ω) |
42 | 41 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) → suc 𝑗 ∈
ω) |
43 | | nnnninf 7090 |
. . . . . . . . . . . . 13
⊢ (suc
𝑗 ∈ ω →
(𝑖 ∈ ω ↦
if(𝑖 ∈ suc 𝑗, 1o, ∅))
∈ ℕ∞) |
44 | 42, 43 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) → (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)) ∈
ℕ∞) |
45 | 40, 44 | ffvelrnd 5621 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈
2o) |
46 | | elnn 4583 |
. . . . . . . . . . 11
⊢ (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈
2o ∧ 2o ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈
ω) |
47 | 45, 22, 46 | sylancl 410 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈
ω) |
48 | | nndceq 6467 |
. . . . . . . . . 10
⊢ (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ ω
∧ 1o ∈ ω) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) =
1o) |
49 | 47, 25, 48 | sylancl 410 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) →
DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) =
1o) |
50 | | eleq2 2230 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = suc 𝑗 → (𝑖 ∈ 𝑘 ↔ 𝑖 ∈ suc 𝑗)) |
51 | 50 | ifbid 3541 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = suc 𝑗 → if(𝑖 ∈ 𝑘, 1o, ∅) = if(𝑖 ∈ suc 𝑗, 1o, ∅)) |
52 | 51 | mpteq2dv 4073 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = suc 𝑗 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) |
53 | 52 | fveq2d 5490 |
. . . . . . . . . . . . 13
⊢ (𝑘 = suc 𝑗 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)))) |
54 | 53 | eqeq1d 2174 |
. . . . . . . . . . . 12
⊢ (𝑘 = suc 𝑗 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) =
1o)) |
55 | 54 | ralsng 3616 |
. . . . . . . . . . 11
⊢ (suc
𝑗 ∈ ω →
(∀𝑘 ∈ {suc
𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) =
1o)) |
56 | 42, 55 | syl 14 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) → (∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) =
1o)) |
57 | 56 | dcbid 828 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) →
(DECID ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) =
1o)) |
58 | 49, 57 | mpbird 166 |
. . . . . . . 8
⊢ ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) →
DECID ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
59 | | dcan2 924 |
. . . . . . . 8
⊢
(DECID ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
→ (DECID ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
→ DECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
∧ ∀𝑘 ∈ {suc
𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o))) |
60 | 58, 59 | mpan9 279 |
. . . . . . 7
⊢ (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) ∧
DECID ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o)
→ DECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
∧ ∀𝑘 ∈ {suc
𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
61 | | ralunb 3303 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (∀𝑘 ∈
suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
∧ ∀𝑘 ∈ {suc
𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
62 | 61 | dcbii 830 |
. . . . . . 7
⊢
(DECID ∀𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ DECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
∧ ∀𝑘 ∈ {suc
𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
63 | 60, 62 | sylibr 133 |
. . . . . 6
⊢ (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) ∧
DECID ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o)
→ DECID ∀𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
64 | | df-suc 4349 |
. . . . . . . 8
⊢ suc suc
𝑗 = (suc 𝑗 ∪ {suc 𝑗}) |
65 | 64 | raleqi 2665 |
. . . . . . 7
⊢
(∀𝑘 ∈
suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑘 ∈
(suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
66 | 65 | dcbii 830 |
. . . . . 6
⊢
(DECID ∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ DECID ∀𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
67 | 63, 66 | sylibr 133 |
. . . . 5
⊢ (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o
↑𝑚 ℕ∞)) ∧
DECID ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o)
→ DECID ∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |
68 | 67 | exp31 362 |
. . . 4
⊢ (𝑗 ∈ ω → (𝑄 ∈ (2o
↑𝑚 ℕ∞) →
(DECID ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
→ DECID ∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o))) |
69 | 68 | a2d 26 |
. . 3
⊢ (𝑗 ∈ ω → ((𝑄 ∈ (2o
↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o)
→ (𝑄 ∈
(2o ↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o))) |
70 | 4, 8, 12, 16, 39, 69 | finds 4577 |
. 2
⊢ (𝑁 ∈ ω → (𝑄 ∈ (2o
↑𝑚 ℕ∞) →
DECID ∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
71 | 70 | impcom 124 |
1
⊢ ((𝑄 ∈ (2o
↑𝑚 ℕ∞) ∧ 𝑁 ∈ ω) → DECID
∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o) |