Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemdc GIF version

Theorem nninfsellemdc 13890
Description: Lemma for nninfself 13893. Showing that the selection function is well defined. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
nninfsellemdc ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
Distinct variable groups:   𝑘,𝑁   𝑄,𝑘   𝑖,𝑘
Allowed substitution hints:   𝑄(𝑖)   𝑁(𝑖)

Proof of Theorem nninfsellemdc
Dummy variables 𝑤 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4380 . . . . . 6 (𝑤 = ∅ → suc 𝑤 = suc ∅)
21raleqdv 2667 . . . . 5 (𝑤 = ∅ → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
32dcbid 828 . . . 4 (𝑤 = ∅ → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
43imbi2d 229 . . 3 (𝑤 = ∅ → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
5 suceq 4380 . . . . . 6 (𝑤 = 𝑗 → suc 𝑤 = suc 𝑗)
65raleqdv 2667 . . . . 5 (𝑤 = 𝑗 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
76dcbid 828 . . . 4 (𝑤 = 𝑗 → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
87imbi2d 229 . . 3 (𝑤 = 𝑗 → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
9 suceq 4380 . . . . . 6 (𝑤 = suc 𝑗 → suc 𝑤 = suc suc 𝑗)
109raleqdv 2667 . . . . 5 (𝑤 = suc 𝑗 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1110dcbid 828 . . . 4 (𝑤 = suc 𝑗 → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1211imbi2d 229 . . 3 (𝑤 = suc 𝑗 → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
13 suceq 4380 . . . . . 6 (𝑤 = 𝑁 → suc 𝑤 = suc 𝑁)
1413raleqdv 2667 . . . . 5 (𝑤 = 𝑁 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1514dcbid 828 . . . 4 (𝑤 = 𝑁 → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1615imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
17 elmapi 6636 . . . . . . 7 (𝑄 ∈ (2o𝑚) → 𝑄:ℕ⟶2o)
18 peano1 4571 . . . . . . . 8 ∅ ∈ ω
19 nnnninf 7090 . . . . . . . 8 (∅ ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ∈ ℕ)
2018, 19mp1i 10 . . . . . . 7 (𝑄 ∈ (2o𝑚) → (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ∈ ℕ)
2117, 20ffvelrnd 5621 . . . . . 6 (𝑄 ∈ (2o𝑚) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ 2o)
22 2onn 6489 . . . . . 6 2o ∈ ω
23 elnn 4583 . . . . . 6 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ 2o ∧ 2o ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ ω)
2421, 22, 23sylancl 410 . . . . 5 (𝑄 ∈ (2o𝑚) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ ω)
25 1onn 6488 . . . . 5 1o ∈ ω
26 nndceq 6467 . . . . 5 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ ω ∧ 1o ∈ ω) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
2724, 25, 26sylancl 410 . . . 4 (𝑄 ∈ (2o𝑚) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
28 suc0 4389 . . . . . . 7 suc ∅ = {∅}
2928raleqi 2665 . . . . . 6 (∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ {∅} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
30 0ex 4109 . . . . . . 7 ∅ ∈ V
31 eleq2 2230 . . . . . . . . . . 11 (𝑘 = ∅ → (𝑖𝑘𝑖 ∈ ∅))
3231ifbid 3541 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑖𝑘, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
3332mpteq2dv 4073 . . . . . . . . 9 (𝑘 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
3433fveq2d 5490 . . . . . . . 8 (𝑘 = ∅ → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))))
3534eqeq1d 2174 . . . . . . 7 (𝑘 = ∅ → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o))
3630, 35ralsn 3619 . . . . . 6 (∀𝑘 ∈ {∅} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
3729, 36bitri 183 . . . . 5 (∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
3837dcbii 830 . . . 4 (DECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
3927, 38sylibr 133 . . 3 (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
4017adantl 275 . . . . . . . . . . . 12 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → 𝑄:ℕ⟶2o)
41 peano2 4572 . . . . . . . . . . . . . 14 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
4241adantr 274 . . . . . . . . . . . . 13 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → suc 𝑗 ∈ ω)
43 nnnninf 7090 . . . . . . . . . . . . 13 (suc 𝑗 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)) ∈ ℕ)
4442, 43syl 14 . . . . . . . . . . . 12 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)) ∈ ℕ)
4540, 44ffvelrnd 5621 . . . . . . . . . . 11 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ 2o)
46 elnn 4583 . . . . . . . . . . 11 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ 2o ∧ 2o ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ ω)
4745, 22, 46sylancl 410 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ ω)
48 nndceq 6467 . . . . . . . . . 10 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ ω ∧ 1o ∈ ω) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o)
4947, 25, 48sylancl 410 . . . . . . . . 9 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o)
50 eleq2 2230 . . . . . . . . . . . . . . . 16 (𝑘 = suc 𝑗 → (𝑖𝑘𝑖 ∈ suc 𝑗))
5150ifbid 3541 . . . . . . . . . . . . . . 15 (𝑘 = suc 𝑗 → if(𝑖𝑘, 1o, ∅) = if(𝑖 ∈ suc 𝑗, 1o, ∅))
5251mpteq2dv 4073 . . . . . . . . . . . . . 14 (𝑘 = suc 𝑗 → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)))
5352fveq2d 5490 . . . . . . . . . . . . 13 (𝑘 = suc 𝑗 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))))
5453eqeq1d 2174 . . . . . . . . . . . 12 (𝑘 = suc 𝑗 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5554ralsng 3616 . . . . . . . . . . 11 (suc 𝑗 ∈ ω → (∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5642, 55syl 14 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5756dcbid 828 . . . . . . . . 9 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (DECID𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5849, 57mpbird 166 . . . . . . . 8 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → DECID𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
59 dcan2 924 . . . . . . . 8 (DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → (DECID𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
6058, 59mpan9 279 . . . . . . 7 (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) ∧ DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → DECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
61 ralunb 3303 . . . . . . . 8 (∀𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
6261dcbii 830 . . . . . . 7 (DECID𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
6360, 62sylibr 133 . . . . . 6 (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) ∧ DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → DECID𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
64 df-suc 4349 . . . . . . . 8 suc suc 𝑗 = (suc 𝑗 ∪ {suc 𝑗})
6564raleqi 2665 . . . . . . 7 (∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6665dcbii 830 . . . . . 6 (DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6763, 66sylibr 133 . . . . 5 (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) ∧ DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6867exp31 362 . . . 4 (𝑗 ∈ ω → (𝑄 ∈ (2o𝑚) → (DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
6968a2d 26 . . 3 (𝑗 ∈ ω → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
704, 8, 12, 16, 39, 69finds 4577 . 2 (𝑁 ∈ ω → (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
7170impcom 124 1 ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 824   = wceq 1343  wcel 2136  wral 2444  cun 3114  c0 3409  ifcif 3520  {csn 3576  cmpt 4043  suc csuc 4343  ωcom 4567  wf 5184  cfv 5188  (class class class)co 5842  1oc1o 6377  2oc2o 6378  𝑚 cmap 6614  xnninf 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-map 6616  df-nninf 7085
This theorem is referenced by:  nninfsellemcl  13891  nninfsellemsuc  13892
  Copyright terms: Public domain W3C validator