Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemdc GIF version

Theorem nninfsellemdc 16021
Description: Lemma for nninfself 16024. Showing that the selection function is well defined. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
nninfsellemdc ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
Distinct variable groups:   𝑘,𝑁   𝑄,𝑘   𝑖,𝑘
Allowed substitution hints:   𝑄(𝑖)   𝑁(𝑖)

Proof of Theorem nninfsellemdc
Dummy variables 𝑤 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4453 . . . . . 6 (𝑤 = ∅ → suc 𝑤 = suc ∅)
21raleqdv 2709 . . . . 5 (𝑤 = ∅ → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
32dcbid 840 . . . 4 (𝑤 = ∅ → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
43imbi2d 230 . . 3 (𝑤 = ∅ → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
5 suceq 4453 . . . . . 6 (𝑤 = 𝑗 → suc 𝑤 = suc 𝑗)
65raleqdv 2709 . . . . 5 (𝑤 = 𝑗 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
76dcbid 840 . . . 4 (𝑤 = 𝑗 → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
87imbi2d 230 . . 3 (𝑤 = 𝑗 → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
9 suceq 4453 . . . . . 6 (𝑤 = suc 𝑗 → suc 𝑤 = suc suc 𝑗)
109raleqdv 2709 . . . . 5 (𝑤 = suc 𝑗 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1110dcbid 840 . . . 4 (𝑤 = suc 𝑗 → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1211imbi2d 230 . . 3 (𝑤 = suc 𝑗 → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
13 suceq 4453 . . . . . 6 (𝑤 = 𝑁 → suc 𝑤 = suc 𝑁)
1413raleqdv 2709 . . . . 5 (𝑤 = 𝑁 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1514dcbid 840 . . . 4 (𝑤 = 𝑁 → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1615imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
17 elmapi 6764 . . . . . . 7 (𝑄 ∈ (2o𝑚) → 𝑄:ℕ⟶2o)
18 peano1 4646 . . . . . . . 8 ∅ ∈ ω
19 nnnninf 7235 . . . . . . . 8 (∅ ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ∈ ℕ)
2018, 19mp1i 10 . . . . . . 7 (𝑄 ∈ (2o𝑚) → (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ∈ ℕ)
2117, 20ffvelcdmd 5723 . . . . . 6 (𝑄 ∈ (2o𝑚) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ 2o)
22 2onn 6614 . . . . . 6 2o ∈ ω
23 elnn 4658 . . . . . 6 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ 2o ∧ 2o ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ ω)
2421, 22, 23sylancl 413 . . . . 5 (𝑄 ∈ (2o𝑚) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ ω)
25 1onn 6613 . . . . 5 1o ∈ ω
26 nndceq 6592 . . . . 5 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ ω ∧ 1o ∈ ω) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
2724, 25, 26sylancl 413 . . . 4 (𝑄 ∈ (2o𝑚) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
28 suc0 4462 . . . . . . 7 suc ∅ = {∅}
2928raleqi 2707 . . . . . 6 (∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ {∅} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
30 0ex 4175 . . . . . . 7 ∅ ∈ V
31 eleq2 2270 . . . . . . . . . . 11 (𝑘 = ∅ → (𝑖𝑘𝑖 ∈ ∅))
3231ifbid 3593 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑖𝑘, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
3332mpteq2dv 4139 . . . . . . . . 9 (𝑘 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
3433fveq2d 5587 . . . . . . . 8 (𝑘 = ∅ → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))))
3534eqeq1d 2215 . . . . . . 7 (𝑘 = ∅ → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o))
3630, 35ralsn 3677 . . . . . 6 (∀𝑘 ∈ {∅} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
3729, 36bitri 184 . . . . 5 (∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
3837dcbii 842 . . . 4 (DECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
3927, 38sylibr 134 . . 3 (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
4017adantl 277 . . . . . . . . . . . 12 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → 𝑄:ℕ⟶2o)
41 peano2 4647 . . . . . . . . . . . . . 14 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
4241adantr 276 . . . . . . . . . . . . 13 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → suc 𝑗 ∈ ω)
43 nnnninf 7235 . . . . . . . . . . . . 13 (suc 𝑗 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)) ∈ ℕ)
4442, 43syl 14 . . . . . . . . . . . 12 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)) ∈ ℕ)
4540, 44ffvelcdmd 5723 . . . . . . . . . . 11 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ 2o)
46 elnn 4658 . . . . . . . . . . 11 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ 2o ∧ 2o ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ ω)
4745, 22, 46sylancl 413 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ ω)
48 nndceq 6592 . . . . . . . . . 10 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ ω ∧ 1o ∈ ω) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o)
4947, 25, 48sylancl 413 . . . . . . . . 9 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o)
50 eleq2 2270 . . . . . . . . . . . . . . . 16 (𝑘 = suc 𝑗 → (𝑖𝑘𝑖 ∈ suc 𝑗))
5150ifbid 3593 . . . . . . . . . . . . . . 15 (𝑘 = suc 𝑗 → if(𝑖𝑘, 1o, ∅) = if(𝑖 ∈ suc 𝑗, 1o, ∅))
5251mpteq2dv 4139 . . . . . . . . . . . . . 14 (𝑘 = suc 𝑗 → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)))
5352fveq2d 5587 . . . . . . . . . . . . 13 (𝑘 = suc 𝑗 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))))
5453eqeq1d 2215 . . . . . . . . . . . 12 (𝑘 = suc 𝑗 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5554ralsng 3674 . . . . . . . . . . 11 (suc 𝑗 ∈ ω → (∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5642, 55syl 14 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5756dcbid 840 . . . . . . . . 9 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (DECID𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5849, 57mpbird 167 . . . . . . . 8 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → DECID𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
59 dcan2 937 . . . . . . . 8 (DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → (DECID𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
6058, 59mpan9 281 . . . . . . 7 (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) ∧ DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → DECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
61 ralunb 3355 . . . . . . . 8 (∀𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
6261dcbii 842 . . . . . . 7 (DECID𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
6360, 62sylibr 134 . . . . . 6 (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) ∧ DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → DECID𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
64 df-suc 4422 . . . . . . . 8 suc suc 𝑗 = (suc 𝑗 ∪ {suc 𝑗})
6564raleqi 2707 . . . . . . 7 (∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6665dcbii 842 . . . . . 6 (DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6763, 66sylibr 134 . . . . 5 (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) ∧ DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6867exp31 364 . . . 4 (𝑗 ∈ ω → (𝑄 ∈ (2o𝑚) → (DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
6968a2d 26 . . 3 (𝑗 ∈ ω → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
704, 8, 12, 16, 39, 69finds 4652 . 2 (𝑁 ∈ ω → (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
7170impcom 125 1 ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  cun 3165  c0 3461  ifcif 3572  {csn 3634  cmpt 4109  suc csuc 4416  ωcom 4642  wf 5272  cfv 5276  (class class class)co 5951  1oc1o 6502  2oc2o 6503  𝑚 cmap 6742  xnninf 7228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1o 6509  df-2o 6510  df-map 6744  df-nninf 7229
This theorem is referenced by:  nninfsellemcl  16022  nninfsellemsuc  16023
  Copyright terms: Public domain W3C validator