Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemdc GIF version

Theorem nninfsellemdc 12898
Description: Lemma for nninfself 12901. Showing that the selection function is well defined. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
nninfsellemdc ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
Distinct variable groups:   𝑘,𝑁   𝑄,𝑘   𝑖,𝑘
Allowed substitution hints:   𝑄(𝑖)   𝑁(𝑖)

Proof of Theorem nninfsellemdc
Dummy variables 𝑤 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4284 . . . . . 6 (𝑤 = ∅ → suc 𝑤 = suc ∅)
21raleqdv 2606 . . . . 5 (𝑤 = ∅ → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
32dcbid 806 . . . 4 (𝑤 = ∅ → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
43imbi2d 229 . . 3 (𝑤 = ∅ → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
5 suceq 4284 . . . . . 6 (𝑤 = 𝑗 → suc 𝑤 = suc 𝑗)
65raleqdv 2606 . . . . 5 (𝑤 = 𝑗 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
76dcbid 806 . . . 4 (𝑤 = 𝑗 → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
87imbi2d 229 . . 3 (𝑤 = 𝑗 → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
9 suceq 4284 . . . . . 6 (𝑤 = suc 𝑗 → suc 𝑤 = suc suc 𝑗)
109raleqdv 2606 . . . . 5 (𝑤 = suc 𝑗 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1110dcbid 806 . . . 4 (𝑤 = suc 𝑗 → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1211imbi2d 229 . . 3 (𝑤 = suc 𝑗 → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
13 suceq 4284 . . . . . 6 (𝑤 = 𝑁 → suc 𝑤 = suc 𝑁)
1413raleqdv 2606 . . . . 5 (𝑤 = 𝑁 → (∀𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1514dcbid 806 . . . 4 (𝑤 = 𝑁 → (DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1615imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑤(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) ↔ (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
17 elmapi 6518 . . . . . . 7 (𝑄 ∈ (2o𝑚) → 𝑄:ℕ⟶2o)
18 peano1 4468 . . . . . . . 8 ∅ ∈ ω
19 nnnninf 6973 . . . . . . . 8 (∅ ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ∈ ℕ)
2018, 19mp1i 10 . . . . . . 7 (𝑄 ∈ (2o𝑚) → (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ∈ ℕ)
2117, 20ffvelrnd 5510 . . . . . 6 (𝑄 ∈ (2o𝑚) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ 2o)
22 2onn 6371 . . . . . 6 2o ∈ ω
23 elnn 4479 . . . . . 6 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ 2o ∧ 2o ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ ω)
2421, 22, 23sylancl 407 . . . . 5 (𝑄 ∈ (2o𝑚) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ ω)
25 1onn 6370 . . . . 5 1o ∈ ω
26 nndceq 6349 . . . . 5 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) ∈ ω ∧ 1o ∈ ω) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
2724, 25, 26sylancl 407 . . . 4 (𝑄 ∈ (2o𝑚) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
28 suc0 4293 . . . . . . 7 suc ∅ = {∅}
2928raleqi 2604 . . . . . 6 (∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ {∅} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
30 0ex 4015 . . . . . . 7 ∅ ∈ V
31 eleq2 2178 . . . . . . . . . . 11 (𝑘 = ∅ → (𝑖𝑘𝑖 ∈ ∅))
3231ifbid 3459 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑖𝑘, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
3332mpteq2dv 3979 . . . . . . . . 9 (𝑘 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
3433fveq2d 5379 . . . . . . . 8 (𝑘 = ∅ → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))))
3534eqeq1d 2123 . . . . . . 7 (𝑘 = ∅ → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o))
3630, 35ralsn 3533 . . . . . 6 (∀𝑘 ∈ {∅} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
3729, 36bitri 183 . . . . 5 (∀𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
3837dcbii 808 . . . 4 (DECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) = 1o)
3927, 38sylibr 133 . . 3 (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc ∅(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
4017adantl 273 . . . . . . . . . . . 12 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → 𝑄:ℕ⟶2o)
41 peano2 4469 . . . . . . . . . . . . . 14 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
4241adantr 272 . . . . . . . . . . . . 13 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → suc 𝑗 ∈ ω)
43 nnnninf 6973 . . . . . . . . . . . . 13 (suc 𝑗 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)) ∈ ℕ)
4442, 43syl 14 . . . . . . . . . . . 12 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)) ∈ ℕ)
4540, 44ffvelrnd 5510 . . . . . . . . . . 11 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ 2o)
46 elnn 4479 . . . . . . . . . . 11 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ 2o ∧ 2o ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ ω)
4745, 22, 46sylancl 407 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ ω)
48 nndceq 6349 . . . . . . . . . 10 (((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) ∈ ω ∧ 1o ∈ ω) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o)
4947, 25, 48sylancl 407 . . . . . . . . 9 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → DECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o)
50 eleq2 2178 . . . . . . . . . . . . . . . 16 (𝑘 = suc 𝑗 → (𝑖𝑘𝑖 ∈ suc 𝑗))
5150ifbid 3459 . . . . . . . . . . . . . . 15 (𝑘 = suc 𝑗 → if(𝑖𝑘, 1o, ∅) = if(𝑖 ∈ suc 𝑗, 1o, ∅))
5251mpteq2dv 3979 . . . . . . . . . . . . . 14 (𝑘 = suc 𝑗 → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅)))
5352fveq2d 5379 . . . . . . . . . . . . 13 (𝑘 = suc 𝑗 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))))
5453eqeq1d 2123 . . . . . . . . . . . 12 (𝑘 = suc 𝑗 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5554ralsng 3530 . . . . . . . . . . 11 (suc 𝑗 ∈ ω → (∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5642, 55syl 14 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5756dcbid 806 . . . . . . . . 9 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → (DECID𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑗, 1o, ∅))) = 1o))
5849, 57mpbird 166 . . . . . . . 8 ((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) → DECID𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
59 dcan 901 . . . . . . . 8 (DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o → (DECID𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
6058, 59mpan9 277 . . . . . . 7 (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) ∧ DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → DECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
61 ralunb 3223 . . . . . . . 8 (∀𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
6261dcbii 808 . . . . . . 7 (DECID𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID (∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ∧ ∀𝑘 ∈ {suc 𝑗} (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
6360, 62sylibr 133 . . . . . 6 (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) ∧ DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → DECID𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
64 df-suc 4253 . . . . . . . 8 suc suc 𝑗 = (suc 𝑗 ∪ {suc 𝑗})
6564raleqi 2604 . . . . . . 7 (∀𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6665dcbii 808 . . . . . 6 (DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6763, 66sylibr 133 . . . . 5 (((𝑗 ∈ ω ∧ 𝑄 ∈ (2o𝑚)) ∧ DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
6867exp31 359 . . . 4 (𝑗 ∈ ω → (𝑄 ∈ (2o𝑚) → (DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1oDECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
6968a2d 26 . . 3 (𝑗 ∈ ω → ((𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o) → (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)))
704, 8, 12, 16, 39, 69finds 4474 . 2 (𝑁 ∈ ω → (𝑄 ∈ (2o𝑚) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
7170impcom 124 1 ((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 802   = wceq 1314  wcel 1463  wral 2390  cun 3035  c0 3329  ifcif 3440  {csn 3493  cmpt 3949  suc csuc 4247  ωcom 4464  wf 5077  cfv 5081  (class class class)co 5728  1oc1o 6260  2oc2o 6261  𝑚 cmap 6496  xnninf 6955
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1o 6267  df-2o 6268  df-map 6498  df-nninf 6957
This theorem is referenced by:  nninfsellemcl  12899  nninfsellemsuc  12900
  Copyright terms: Public domain W3C validator