| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprod1p | GIF version | ||
| Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.) |
| Ref | Expression |
|---|---|
| fprod1p.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| fprod1p.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| fprod1p.3 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fprod1p | ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprod1p.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzfz1 10227 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
| 3 | 1, 2 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 4 | elfzelz 10221 | . . . . . . 7 ⊢ (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
| 5 | 3, 4 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | fzsn 10262 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
| 7 | 5, 6 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
| 8 | 7 | ineq1d 3404 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁))) |
| 9 | 5 | zred 9569 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 10 | 9 | ltp1d 9077 | . . . . 5 ⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
| 11 | fzdisj 10248 | . . . . 5 ⊢ (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | |
| 12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
| 13 | 8, 12 | eqtr3d 2264 | . . 3 ⊢ (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
| 14 | fzsplit 10247 | . . . . 5 ⊢ (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) | |
| 15 | 3, 14 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
| 16 | 7 | uneq1d 3357 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
| 17 | 15, 16 | eqtrd 2262 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
| 18 | eluzelz 9731 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 19 | 1, 18 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 20 | 5, 19 | fzfigd 10653 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 21 | elfzelz 10221 | . . . . . 6 ⊢ (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ) | |
| 22 | zdceq 9522 | . . . . . 6 ⊢ ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑗 = 𝑀) | |
| 23 | 21, 5, 22 | syl2anr 290 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 = 𝑀) |
| 24 | velsn 3683 | . . . . . 6 ⊢ (𝑗 ∈ {𝑀} ↔ 𝑗 = 𝑀) | |
| 25 | 24 | dcbii 845 | . . . . 5 ⊢ (DECID 𝑗 ∈ {𝑀} ↔ DECID 𝑗 = 𝑀) |
| 26 | 23, 25 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 ∈ {𝑀}) |
| 27 | 26 | ralrimiva 2603 | . . 3 ⊢ (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)DECID 𝑗 ∈ {𝑀}) |
| 28 | fprod1p.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 29 | 13, 17, 20, 27, 28 | fprodsplitdc 12107 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
| 30 | fprod1p.3 | . . . . . 6 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
| 31 | 30 | eleq1d 2298 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 32 | 28 | ralrimiva 2603 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 33 | 31, 32, 3 | rspcdva 2912 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 34 | 30 | prodsn 12104 | . . . 4 ⊢ ((𝑀 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| 35 | 3, 33, 34 | syl2anc 411 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| 36 | 35 | oveq1d 6016 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
| 37 | 29, 36 | eqtrd 2262 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 {csn 3666 class class class wbr 4083 ‘cfv 5318 (class class class)co 6001 ℂcc 7997 1c1 8000 + caddc 8002 · cmul 8004 < clt 8181 ℤcz 9446 ℤ≥cuz 9722 ...cfz 10204 ∏cprod 12061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-exp 10761 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-proddc 12062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |