![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fprod1p | GIF version |
Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.) |
Ref | Expression |
---|---|
fprod1p.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fprod1p.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fprod1p.3 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fprod1p | ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprod1p.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzfz1 10061 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
3 | 1, 2 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
4 | elfzelz 10055 | . . . . . . 7 ⊢ (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
5 | 3, 4 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | fzsn 10096 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
7 | 5, 6 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
8 | 7 | ineq1d 3350 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁))) |
9 | 5 | zred 9405 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
10 | 9 | ltp1d 8917 | . . . . 5 ⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
11 | fzdisj 10082 | . . . . 5 ⊢ (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | |
12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
13 | 8, 12 | eqtr3d 2224 | . . 3 ⊢ (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
14 | fzsplit 10081 | . . . . 5 ⊢ (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) | |
15 | 3, 14 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
16 | 7 | uneq1d 3303 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
17 | 15, 16 | eqtrd 2222 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
18 | eluzelz 9567 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
19 | 1, 18 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | 5, 19 | fzfigd 10462 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
21 | elfzelz 10055 | . . . . . 6 ⊢ (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ) | |
22 | zdceq 9358 | . . . . . 6 ⊢ ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑗 = 𝑀) | |
23 | 21, 5, 22 | syl2anr 290 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 = 𝑀) |
24 | velsn 3624 | . . . . . 6 ⊢ (𝑗 ∈ {𝑀} ↔ 𝑗 = 𝑀) | |
25 | 24 | dcbii 841 | . . . . 5 ⊢ (DECID 𝑗 ∈ {𝑀} ↔ DECID 𝑗 = 𝑀) |
26 | 23, 25 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 ∈ {𝑀}) |
27 | 26 | ralrimiva 2563 | . . 3 ⊢ (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)DECID 𝑗 ∈ {𝑀}) |
28 | fprod1p.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
29 | 13, 17, 20, 27, 28 | fprodsplitdc 11636 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
30 | fprod1p.3 | . . . . . 6 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
31 | 30 | eleq1d 2258 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
32 | 28 | ralrimiva 2563 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
33 | 31, 32, 3 | rspcdva 2861 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
34 | 30 | prodsn 11633 | . . . 4 ⊢ ((𝑀 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵) |
35 | 3, 33, 34 | syl2anc 411 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵) |
36 | 35 | oveq1d 5911 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
37 | 29, 36 | eqtrd 2222 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2160 ∪ cun 3142 ∩ cin 3143 ∅c0 3437 {csn 3607 class class class wbr 4018 ‘cfv 5235 (class class class)co 5896 ℂcc 7839 1c1 7842 + caddc 7844 · cmul 7846 < clt 8022 ℤcz 9283 ℤ≥cuz 9558 ...cfz 10038 ∏cprod 11590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 ax-pre-mulext 7959 ax-arch 7960 ax-caucvg 7961 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-recs 6330 df-irdg 6395 df-frec 6416 df-1o 6441 df-oadd 6445 df-er 6559 df-en 6767 df-dom 6768 df-fin 6769 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-reap 8562 df-ap 8569 df-div 8660 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-n0 9207 df-z 9284 df-uz 9559 df-q 9650 df-rp 9684 df-fz 10039 df-fzo 10173 df-seqfrec 10477 df-exp 10551 df-ihash 10788 df-cj 10883 df-re 10884 df-im 10885 df-rsqrt 11039 df-abs 11040 df-clim 11319 df-proddc 11591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |