![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fprod1p | GIF version |
Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.) |
Ref | Expression |
---|---|
fprod1p.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fprod1p.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fprod1p.3 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fprod1p | ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprod1p.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzfz1 10097 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
3 | 1, 2 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
4 | elfzelz 10091 | . . . . . . 7 ⊢ (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
5 | 3, 4 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | fzsn 10132 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
7 | 5, 6 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
8 | 7 | ineq1d 3359 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁))) |
9 | 5 | zred 9439 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
10 | 9 | ltp1d 8949 | . . . . 5 ⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
11 | fzdisj 10118 | . . . . 5 ⊢ (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | |
12 | 10, 11 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
13 | 8, 12 | eqtr3d 2228 | . . 3 ⊢ (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
14 | fzsplit 10117 | . . . . 5 ⊢ (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) | |
15 | 3, 14 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
16 | 7 | uneq1d 3312 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
17 | 15, 16 | eqtrd 2226 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
18 | eluzelz 9601 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
19 | 1, 18 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | 5, 19 | fzfigd 10502 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
21 | elfzelz 10091 | . . . . . 6 ⊢ (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ) | |
22 | zdceq 9392 | . . . . . 6 ⊢ ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑗 = 𝑀) | |
23 | 21, 5, 22 | syl2anr 290 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 = 𝑀) |
24 | velsn 3635 | . . . . . 6 ⊢ (𝑗 ∈ {𝑀} ↔ 𝑗 = 𝑀) | |
25 | 24 | dcbii 841 | . . . . 5 ⊢ (DECID 𝑗 ∈ {𝑀} ↔ DECID 𝑗 = 𝑀) |
26 | 23, 25 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 ∈ {𝑀}) |
27 | 26 | ralrimiva 2567 | . . 3 ⊢ (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)DECID 𝑗 ∈ {𝑀}) |
28 | fprod1p.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
29 | 13, 17, 20, 27, 28 | fprodsplitdc 11739 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
30 | fprod1p.3 | . . . . . 6 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
31 | 30 | eleq1d 2262 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
32 | 28 | ralrimiva 2567 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
33 | 31, 32, 3 | rspcdva 2869 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
34 | 30 | prodsn 11736 | . . . 4 ⊢ ((𝑀 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵) |
35 | 3, 33, 34 | syl2anc 411 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵) |
36 | 35 | oveq1d 5933 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
37 | 29, 36 | eqtrd 2226 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 ∩ cin 3152 ∅c0 3446 {csn 3618 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 1c1 7873 + caddc 7875 · cmul 7877 < clt 8054 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 ∏cprod 11693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-proddc 11694 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |