ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprod1p GIF version

Theorem fprod1p 11943
Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
Hypotheses
Ref Expression
fprod1p.1 (𝜑𝑁 ∈ (ℤ𝑀))
fprod1p.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprod1p.3 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
fprod1p (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Distinct variable groups:   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprod1p
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fprod1p.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz1 10155 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
31, 2syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
4 elfzelz 10149 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
53, 4syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
6 fzsn 10190 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
75, 6syl 14 . . . . 5 (𝜑 → (𝑀...𝑀) = {𝑀})
87ineq1d 3373 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁)))
95zred 9497 . . . . . 6 (𝜑𝑀 ∈ ℝ)
109ltp1d 9005 . . . . 5 (𝜑𝑀 < (𝑀 + 1))
11 fzdisj 10176 . . . . 5 (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
1210, 11syl 14 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
138, 12eqtr3d 2240 . . 3 (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
14 fzsplit 10175 . . . . 5 (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
153, 14syl 14 . . . 4 (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
167uneq1d 3326 . . . 4 (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
1715, 16eqtrd 2238 . . 3 (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
18 eluzelz 9659 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
191, 18syl 14 . . . 4 (𝜑𝑁 ∈ ℤ)
205, 19fzfigd 10578 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
21 elfzelz 10149 . . . . . 6 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
22 zdceq 9450 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑗 = 𝑀)
2321, 5, 22syl2anr 290 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 = 𝑀)
24 velsn 3650 . . . . . 6 (𝑗 ∈ {𝑀} ↔ 𝑗 = 𝑀)
2524dcbii 842 . . . . 5 (DECID 𝑗 ∈ {𝑀} ↔ DECID 𝑗 = 𝑀)
2623, 25sylibr 134 . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 ∈ {𝑀})
2726ralrimiva 2579 . . 3 (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)DECID 𝑗 ∈ {𝑀})
28 fprod1p.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
2913, 17, 20, 27, 28fprodsplitdc 11940 . 2 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
30 fprod1p.3 . . . . . 6 (𝑘 = 𝑀𝐴 = 𝐵)
3130eleq1d 2274 . . . . 5 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
3228ralrimiva 2579 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
3331, 32, 3rspcdva 2882 . . . 4 (𝜑𝐵 ∈ ℂ)
3430prodsn 11937 . . . 4 ((𝑀 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
353, 33, 34syl2anc 411 . . 3 (𝜑 → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
3635oveq1d 5961 . 2 (𝜑 → (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
3729, 36eqtrd 2238 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2176  cun 3164  cin 3165  c0 3460  {csn 3633   class class class wbr 4045  cfv 5272  (class class class)co 5946  cc 7925  1c1 7928   + caddc 7930   · cmul 7932   < clt 8109  cz 9374  cuz 9650  ...cfz 10132  cprod 11894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-proddc 11895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator