ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprod1p GIF version

Theorem fprod1p 11540
Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
Hypotheses
Ref Expression
fprod1p.1 (𝜑𝑁 ∈ (ℤ𝑀))
fprod1p.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprod1p.3 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
fprod1p (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Distinct variable groups:   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprod1p
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fprod1p.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz1 9966 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
31, 2syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
4 elfzelz 9960 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
53, 4syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
6 fzsn 10001 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
75, 6syl 14 . . . . 5 (𝜑 → (𝑀...𝑀) = {𝑀})
87ineq1d 3322 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁)))
95zred 9313 . . . . . 6 (𝜑𝑀 ∈ ℝ)
109ltp1d 8825 . . . . 5 (𝜑𝑀 < (𝑀 + 1))
11 fzdisj 9987 . . . . 5 (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
1210, 11syl 14 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
138, 12eqtr3d 2200 . . 3 (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
14 fzsplit 9986 . . . . 5 (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
153, 14syl 14 . . . 4 (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
167uneq1d 3275 . . . 4 (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
1715, 16eqtrd 2198 . . 3 (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
18 eluzelz 9475 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
191, 18syl 14 . . . 4 (𝜑𝑁 ∈ ℤ)
205, 19fzfigd 10366 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
21 elfzelz 9960 . . . . . 6 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
22 zdceq 9266 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑗 = 𝑀)
2321, 5, 22syl2anr 288 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 = 𝑀)
24 velsn 3593 . . . . . 6 (𝑗 ∈ {𝑀} ↔ 𝑗 = 𝑀)
2524dcbii 830 . . . . 5 (DECID 𝑗 ∈ {𝑀} ↔ DECID 𝑗 = 𝑀)
2623, 25sylibr 133 . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 ∈ {𝑀})
2726ralrimiva 2539 . . 3 (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)DECID 𝑗 ∈ {𝑀})
28 fprod1p.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
2913, 17, 20, 27, 28fprodsplitdc 11537 . 2 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
30 fprod1p.3 . . . . . 6 (𝑘 = 𝑀𝐴 = 𝐵)
3130eleq1d 2235 . . . . 5 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
3228ralrimiva 2539 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
3331, 32, 3rspcdva 2835 . . . 4 (𝜑𝐵 ∈ ℂ)
3430prodsn 11534 . . . 4 ((𝑀 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
353, 33, 34syl2anc 409 . . 3 (𝜑 → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
3635oveq1d 5857 . 2 (𝜑 → (∏𝑘 ∈ {𝑀}𝐴 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
3729, 36eqtrd 2198 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 824   = wceq 1343  wcel 2136  cun 3114  cin 3115  c0 3409  {csn 3576   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cz 9191  cuz 9466  ...cfz 9944  cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator