ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemcl GIF version

Theorem nninfdclemcl 12452
Description: Lemma for nninfdc 12457. (Contributed by Jim Kingdon, 25-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemcl.p (𝜑𝑃𝐴)
nninfdclemcl.q (𝜑𝑄𝐴)
Assertion
Ref Expression
nninfdclemcl (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴,𝑧   𝐴,𝑚,𝑛   𝑥,𝑃   𝑃,𝑚,𝑛   𝑦,𝑃,𝑧   𝑦,𝑄,𝑧   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑚,𝑛)   𝑄(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemcl
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemcl.p . . . 4 (𝜑𝑃𝐴)
31, 2sseldd 3158 . . 3 (𝜑𝑃 ∈ ℕ)
4 nninfdclemcl.q . . . 4 (𝜑𝑄𝐴)
51, 4sseldd 3158 . . 3 (𝜑𝑄 ∈ ℕ)
6 inss1 3357 . . . . . 6 (𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ 𝐴
76, 1sstrid 3168 . . . . 5 (𝜑 → (𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ ℕ)
8 eleq1w 2238 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝑥𝐴𝑠𝐴))
98dcbid 838 . . . . . . . . . 10 (𝑥 = 𝑠 → (DECID 𝑥𝐴DECID 𝑠𝐴))
10 nninfdclemf.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
1110adantr 276 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
12 simpr 110 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℕ)
139, 11, 12rspcdva 2848 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠𝐴)
143adantr 276 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑃 ∈ ℕ)
1514nnzd 9377 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → 𝑃 ∈ ℤ)
1615peano2zd 9381 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → (𝑃 + 1) ∈ ℤ)
1712nnzd 9377 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
18 eluzdc 9613 . . . . . . . . . 10 (((𝑃 + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) → DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)))
1916, 17, 18syl2anc 411 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)))
20 dcan2 934 . . . . . . . . 9 (DECID 𝑠𝐴 → (DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1)))))
2113, 19, 20sylc 62 . . . . . . . 8 ((𝜑𝑠 ∈ ℕ) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
22 elin 3320 . . . . . . . . 9 (𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
2322dcbii 840 . . . . . . . 8 (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
2421, 23sylibr 134 . . . . . . 7 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
2524ralrimiva 2550 . . . . . 6 (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
26 eleq1w 2238 . . . . . . . 8 (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))))
2726dcbid 838 . . . . . . 7 (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))))
2827cbvralv 2705 . . . . . 6 (∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
2925, 28sylib 122 . . . . 5 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
30 breq1 4008 . . . . . . . . 9 (𝑚 = 𝑃 → (𝑚 < 𝑛𝑃 < 𝑛))
3130rexbidv 2478 . . . . . . . 8 (𝑚 = 𝑃 → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 𝑃 < 𝑛))
32 nninfdclemf.nb . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
3331, 32, 3rspcdva 2848 . . . . . . 7 (𝜑 → ∃𝑛𝐴 𝑃 < 𝑛)
34 breq2 4009 . . . . . . . 8 (𝑛 = 𝑡 → (𝑃 < 𝑛𝑃 < 𝑡))
3534cbvrexv 2706 . . . . . . 7 (∃𝑛𝐴 𝑃 < 𝑛 ↔ ∃𝑡𝐴 𝑃 < 𝑡)
3633, 35sylib 122 . . . . . 6 (𝜑 → ∃𝑡𝐴 𝑃 < 𝑡)
37 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡𝐴)
383nnzd 9377 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
3938peano2zd 9381 . . . . . . . . . 10 (𝜑 → (𝑃 + 1) ∈ ℤ)
4039adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 + 1) ∈ ℤ)
411adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝐴 ⊆ ℕ)
4241, 37sseldd 3158 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ ℕ)
4342nnzd 9377 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ ℤ)
44 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑃 < 𝑡)
453adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑃 ∈ ℕ)
46 nnltp1le 9316 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡))
4745, 42, 46syl2anc 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡))
4844, 47mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 + 1) ≤ 𝑡)
49 eluz2 9537 . . . . . . . . 9 (𝑡 ∈ (ℤ‘(𝑃 + 1)) ↔ ((𝑃 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ ∧ (𝑃 + 1) ≤ 𝑡))
5040, 43, 48, 49syl3anbrc 1181 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ (ℤ‘(𝑃 + 1)))
5137, 50elind 3322 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
52 elex2 2755 . . . . . . 7 (𝑡 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5351, 52syl 14 . . . . . 6 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5436, 53rexlimddv 2599 . . . . 5 (𝜑 → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
55 nnmindc 12038 . . . . 5 (((𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ∧ ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))) → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
567, 29, 54, 55syl3anc 1238 . . . 4 (𝜑 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5756elin1d 3326 . . 3 (𝜑 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴)
58 fvoveq1 5901 . . . . . 6 (𝑦 = 𝑃 → (ℤ‘(𝑦 + 1)) = (ℤ‘(𝑃 + 1)))
5958ineq2d 3338 . . . . 5 (𝑦 = 𝑃 → (𝐴 ∩ (ℤ‘(𝑦 + 1))) = (𝐴 ∩ (ℤ‘(𝑃 + 1))))
6059infeq1d 7014 . . . 4 (𝑦 = 𝑃 → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
61 eqidd 2178 . . . 4 (𝑧 = 𝑄 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
62 eqid 2177 . . . 4 (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
6360, 61, 62ovmpog 6012 . . 3 ((𝑃 ∈ ℕ ∧ 𝑄 ∈ ℕ ∧ inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴) → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
643, 5, 57, 63syl3anc 1238 . 2 (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
6564, 57eqeltrd 2254 1 (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  cin 3130  wss 3131   class class class wbr 4005  cfv 5218  (class class class)co 5878  cmpo 5880  infcinf 6985  cr 7813  1c1 7815   + caddc 7817   < clt 7995  cle 7996  cn 8922  cz 9256  cuz 9531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-fz 10012  df-fzo 10146
This theorem is referenced by:  nninfdclemf  12453  nninfdclemp1  12454
  Copyright terms: Public domain W3C validator