ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemcl GIF version

Theorem nninfdclemcl 12665
Description: Lemma for nninfdc 12670. (Contributed by Jim Kingdon, 25-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemcl.p (𝜑𝑃𝐴)
nninfdclemcl.q (𝜑𝑄𝐴)
Assertion
Ref Expression
nninfdclemcl (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴,𝑧   𝐴,𝑚,𝑛   𝑥,𝑃   𝑃,𝑚,𝑛   𝑦,𝑃,𝑧   𝑦,𝑄,𝑧   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑚,𝑛)   𝑄(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemcl
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemcl.p . . . 4 (𝜑𝑃𝐴)
31, 2sseldd 3184 . . 3 (𝜑𝑃 ∈ ℕ)
4 nninfdclemcl.q . . . 4 (𝜑𝑄𝐴)
51, 4sseldd 3184 . . 3 (𝜑𝑄 ∈ ℕ)
6 inss1 3383 . . . . . 6 (𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ 𝐴
76, 1sstrid 3194 . . . . 5 (𝜑 → (𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ ℕ)
8 eleq1 2259 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝑥𝐴𝑠𝐴))
98dcbid 839 . . . . . . . . . 10 (𝑥 = 𝑠 → (DECID 𝑥𝐴DECID 𝑠𝐴))
10 nninfdclemf.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
1110adantr 276 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
12 simpr 110 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℕ)
139, 11, 12rspcdva 2873 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠𝐴)
143adantr 276 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑃 ∈ ℕ)
1514nnzd 9447 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → 𝑃 ∈ ℤ)
1615peano2zd 9451 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → (𝑃 + 1) ∈ ℤ)
1712nnzd 9447 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
18 eluzdc 9684 . . . . . . . . . 10 (((𝑃 + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) → DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)))
1916, 17, 18syl2anc 411 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)))
2013, 19dcand 934 . . . . . . . 8 ((𝜑𝑠 ∈ ℕ) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
21 elin 3346 . . . . . . . . 9 (𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
2221dcbii 841 . . . . . . . 8 (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
2320, 22sylibr 134 . . . . . . 7 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
2423ralrimiva 2570 . . . . . 6 (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
25 eleq1 2259 . . . . . . . 8 (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))))
2625dcbid 839 . . . . . . 7 (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))))
2726cbvralvw 2733 . . . . . 6 (∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
2824, 27sylib 122 . . . . 5 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
29 breq1 4036 . . . . . . . . 9 (𝑚 = 𝑃 → (𝑚 < 𝑛𝑃 < 𝑛))
3029rexbidv 2498 . . . . . . . 8 (𝑚 = 𝑃 → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 𝑃 < 𝑛))
31 nninfdclemf.nb . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
3230, 31, 3rspcdva 2873 . . . . . . 7 (𝜑 → ∃𝑛𝐴 𝑃 < 𝑛)
33 breq2 4037 . . . . . . . 8 (𝑛 = 𝑡 → (𝑃 < 𝑛𝑃 < 𝑡))
3433cbvrexvw 2734 . . . . . . 7 (∃𝑛𝐴 𝑃 < 𝑛 ↔ ∃𝑡𝐴 𝑃 < 𝑡)
3532, 34sylib 122 . . . . . 6 (𝜑 → ∃𝑡𝐴 𝑃 < 𝑡)
36 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡𝐴)
373nnzd 9447 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
3837peano2zd 9451 . . . . . . . . . 10 (𝜑 → (𝑃 + 1) ∈ ℤ)
3938adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 + 1) ∈ ℤ)
401adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝐴 ⊆ ℕ)
4140, 36sseldd 3184 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ ℕ)
4241nnzd 9447 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ ℤ)
43 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑃 < 𝑡)
44 nnltp1le 9386 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡))
453, 41, 44syl2an2r 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡))
4643, 45mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 + 1) ≤ 𝑡)
47 eluz2 9607 . . . . . . . . 9 (𝑡 ∈ (ℤ‘(𝑃 + 1)) ↔ ((𝑃 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ ∧ (𝑃 + 1) ≤ 𝑡))
4839, 42, 46, 47syl3anbrc 1183 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ (ℤ‘(𝑃 + 1)))
4936, 48elind 3348 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
50 elex2 2779 . . . . . . 7 (𝑡 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5149, 50syl 14 . . . . . 6 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5235, 51rexlimddv 2619 . . . . 5 (𝜑 → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
53 nnmindc 12201 . . . . 5 (((𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ∧ ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))) → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
547, 28, 52, 53syl3anc 1249 . . . 4 (𝜑 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5554elin1d 3352 . . 3 (𝜑 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴)
56 fvoveq1 5945 . . . . . 6 (𝑦 = 𝑃 → (ℤ‘(𝑦 + 1)) = (ℤ‘(𝑃 + 1)))
5756ineq2d 3364 . . . . 5 (𝑦 = 𝑃 → (𝐴 ∩ (ℤ‘(𝑦 + 1))) = (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5857infeq1d 7078 . . . 4 (𝑦 = 𝑃 → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
59 eqidd 2197 . . . 4 (𝑧 = 𝑄 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
60 eqid 2196 . . . 4 (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
6158, 59, 60ovmpog 6057 . . 3 ((𝑃 ∈ ℕ ∧ 𝑄 ∈ ℕ ∧ inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴) → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
623, 5, 55, 61syl3anc 1249 . 2 (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
6362, 55eqeltrd 2273 1 (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  cin 3156  wss 3157   class class class wbr 4033  cfv 5258  (class class class)co 5922  cmpo 5924  infcinf 7049  cr 7878  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cn 8990  cz 9326  cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  nninfdclemf  12666  nninfdclemp1  12667
  Copyright terms: Public domain W3C validator