ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemcl GIF version

Theorem nninfdclemcl 12608
Description: Lemma for nninfdc 12613. (Contributed by Jim Kingdon, 25-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemcl.p (𝜑𝑃𝐴)
nninfdclemcl.q (𝜑𝑄𝐴)
Assertion
Ref Expression
nninfdclemcl (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴,𝑧   𝐴,𝑚,𝑛   𝑥,𝑃   𝑃,𝑚,𝑛   𝑦,𝑃,𝑧   𝑦,𝑄,𝑧   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑚,𝑛)   𝑄(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemcl
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemcl.p . . . 4 (𝜑𝑃𝐴)
31, 2sseldd 3181 . . 3 (𝜑𝑃 ∈ ℕ)
4 nninfdclemcl.q . . . 4 (𝜑𝑄𝐴)
51, 4sseldd 3181 . . 3 (𝜑𝑄 ∈ ℕ)
6 inss1 3380 . . . . . 6 (𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ 𝐴
76, 1sstrid 3191 . . . . 5 (𝜑 → (𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ ℕ)
8 eleq1 2256 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝑥𝐴𝑠𝐴))
98dcbid 839 . . . . . . . . . 10 (𝑥 = 𝑠 → (DECID 𝑥𝐴DECID 𝑠𝐴))
10 nninfdclemf.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
1110adantr 276 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
12 simpr 110 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℕ)
139, 11, 12rspcdva 2870 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠𝐴)
143adantr 276 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑃 ∈ ℕ)
1514nnzd 9441 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → 𝑃 ∈ ℤ)
1615peano2zd 9445 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → (𝑃 + 1) ∈ ℤ)
1712nnzd 9441 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
18 eluzdc 9678 . . . . . . . . . 10 (((𝑃 + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) → DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)))
1916, 17, 18syl2anc 411 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)))
2013, 19dcand 934 . . . . . . . 8 ((𝜑𝑠 ∈ ℕ) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
21 elin 3343 . . . . . . . . 9 (𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
2221dcbii 841 . . . . . . . 8 (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
2320, 22sylibr 134 . . . . . . 7 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
2423ralrimiva 2567 . . . . . 6 (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
25 eleq1 2256 . . . . . . . 8 (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))))
2625dcbid 839 . . . . . . 7 (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))))
2726cbvralvw 2730 . . . . . 6 (∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
2824, 27sylib 122 . . . . 5 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
29 breq1 4033 . . . . . . . . 9 (𝑚 = 𝑃 → (𝑚 < 𝑛𝑃 < 𝑛))
3029rexbidv 2495 . . . . . . . 8 (𝑚 = 𝑃 → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 𝑃 < 𝑛))
31 nninfdclemf.nb . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
3230, 31, 3rspcdva 2870 . . . . . . 7 (𝜑 → ∃𝑛𝐴 𝑃 < 𝑛)
33 breq2 4034 . . . . . . . 8 (𝑛 = 𝑡 → (𝑃 < 𝑛𝑃 < 𝑡))
3433cbvrexvw 2731 . . . . . . 7 (∃𝑛𝐴 𝑃 < 𝑛 ↔ ∃𝑡𝐴 𝑃 < 𝑡)
3532, 34sylib 122 . . . . . 6 (𝜑 → ∃𝑡𝐴 𝑃 < 𝑡)
36 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡𝐴)
373nnzd 9441 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
3837peano2zd 9445 . . . . . . . . . 10 (𝜑 → (𝑃 + 1) ∈ ℤ)
3938adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 + 1) ∈ ℤ)
401adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝐴 ⊆ ℕ)
4140, 36sseldd 3181 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ ℕ)
4241nnzd 9441 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ ℤ)
43 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑃 < 𝑡)
44 nnltp1le 9380 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡))
453, 41, 44syl2an2r 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡))
4643, 45mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 + 1) ≤ 𝑡)
47 eluz2 9601 . . . . . . . . 9 (𝑡 ∈ (ℤ‘(𝑃 + 1)) ↔ ((𝑃 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ ∧ (𝑃 + 1) ≤ 𝑡))
4839, 42, 46, 47syl3anbrc 1183 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ (ℤ‘(𝑃 + 1)))
4936, 48elind 3345 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
50 elex2 2776 . . . . . . 7 (𝑡 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5149, 50syl 14 . . . . . 6 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5235, 51rexlimddv 2616 . . . . 5 (𝜑 → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
53 nnmindc 12174 . . . . 5 (((𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ∧ ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))) → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
547, 28, 52, 53syl3anc 1249 . . . 4 (𝜑 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5554elin1d 3349 . . 3 (𝜑 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴)
56 fvoveq1 5942 . . . . . 6 (𝑦 = 𝑃 → (ℤ‘(𝑦 + 1)) = (ℤ‘(𝑃 + 1)))
5756ineq2d 3361 . . . . 5 (𝑦 = 𝑃 → (𝐴 ∩ (ℤ‘(𝑦 + 1))) = (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5857infeq1d 7073 . . . 4 (𝑦 = 𝑃 → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
59 eqidd 2194 . . . 4 (𝑧 = 𝑄 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
60 eqid 2193 . . . 4 (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
6158, 59, 60ovmpog 6054 . . 3 ((𝑃 ∈ ℕ ∧ 𝑄 ∈ ℕ ∧ inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴) → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
623, 5, 55, 61syl3anc 1249 . 2 (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
6362, 55eqeltrd 2270 1 (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  cin 3153  wss 3154   class class class wbr 4030  cfv 5255  (class class class)co 5919  cmpo 5921  infcinf 7044  cr 7873  1c1 7875   + caddc 7877   < clt 8056  cle 8057  cn 8984  cz 9320  cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212
This theorem is referenced by:  nninfdclemf  12609  nninfdclemp1  12610
  Copyright terms: Public domain W3C validator