| Step | Hyp | Ref
| Expression |
| 1 | | nninfdclemf.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| 2 | | nninfdclemcl.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 3 | 1, 2 | sseldd 3184 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | | nninfdclemcl.q |
. . . 4
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| 5 | 1, 4 | sseldd 3184 |
. . 3
⊢ (𝜑 → 𝑄 ∈ ℕ) |
| 6 | | inss1 3383 |
. . . . . 6
⊢ (𝐴 ∩
(ℤ≥‘(𝑃 + 1))) ⊆ 𝐴 |
| 7 | 6, 1 | sstrid 3194 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ⊆
ℕ) |
| 8 | | eleq1 2259 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → (𝑥 ∈ 𝐴 ↔ 𝑠 ∈ 𝐴)) |
| 9 | 8 | dcbid 839 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑠 ∈ 𝐴)) |
| 10 | | nninfdclemf.dc |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| 11 | 10 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴) |
| 12 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℕ) |
| 13 | 9, 11, 12 | rspcdva 2873 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → DECID
𝑠 ∈ 𝐴) |
| 14 | 3 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → 𝑃 ∈ ℕ) |
| 15 | 14 | nnzd 9447 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → 𝑃 ∈ ℤ) |
| 16 | 15 | peano2zd 9451 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → (𝑃 + 1) ∈ ℤ) |
| 17 | 12 | nnzd 9447 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℤ) |
| 18 | | eluzdc 9684 |
. . . . . . . . . 10
⊢ (((𝑃 + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) →
DECID 𝑠
∈ (ℤ≥‘(𝑃 + 1))) |
| 19 | 16, 17, 18 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → DECID
𝑠 ∈
(ℤ≥‘(𝑃 + 1))) |
| 20 | 13, 19 | dcand 934 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → DECID
(𝑠 ∈ 𝐴 ∧ 𝑠 ∈ (ℤ≥‘(𝑃 + 1)))) |
| 21 | | elin 3346 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ↔ (𝑠 ∈ 𝐴 ∧ 𝑠 ∈ (ℤ≥‘(𝑃 + 1)))) |
| 22 | 21 | dcbii 841 |
. . . . . . . 8
⊢
(DECID 𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ↔
DECID (𝑠
∈ 𝐴 ∧ 𝑠 ∈
(ℤ≥‘(𝑃 + 1)))) |
| 23 | 20, 22 | sylibr 134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → DECID
𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
| 24 | 23 | ralrimiva 2570 |
. . . . . 6
⊢ (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
| 25 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))))) |
| 26 | 25 | dcbid 839 |
. . . . . . 7
⊢ (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ↔
DECID 𝑥
∈ (𝐴 ∩
(ℤ≥‘(𝑃 + 1))))) |
| 27 | 26 | cbvralvw 2733 |
. . . . . 6
⊢
(∀𝑠 ∈
ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ↔ ∀𝑥 ∈ ℕ
DECID 𝑥
∈ (𝐴 ∩
(ℤ≥‘(𝑃 + 1)))) |
| 28 | 24, 27 | sylib 122 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
| 29 | | breq1 4036 |
. . . . . . . . 9
⊢ (𝑚 = 𝑃 → (𝑚 < 𝑛 ↔ 𝑃 < 𝑛)) |
| 30 | 29 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑚 = 𝑃 → (∃𝑛 ∈ 𝐴 𝑚 < 𝑛 ↔ ∃𝑛 ∈ 𝐴 𝑃 < 𝑛)) |
| 31 | | nninfdclemf.nb |
. . . . . . . 8
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
| 32 | 30, 31, 3 | rspcdva 2873 |
. . . . . . 7
⊢ (𝜑 → ∃𝑛 ∈ 𝐴 𝑃 < 𝑛) |
| 33 | | breq2 4037 |
. . . . . . . 8
⊢ (𝑛 = 𝑡 → (𝑃 < 𝑛 ↔ 𝑃 < 𝑡)) |
| 34 | 33 | cbvrexvw 2734 |
. . . . . . 7
⊢
(∃𝑛 ∈
𝐴 𝑃 < 𝑛 ↔ ∃𝑡 ∈ 𝐴 𝑃 < 𝑡) |
| 35 | 32, 34 | sylib 122 |
. . . . . 6
⊢ (𝜑 → ∃𝑡 ∈ 𝐴 𝑃 < 𝑡) |
| 36 | | simprl 529 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑡 ∈ 𝐴) |
| 37 | 3 | nnzd 9447 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 38 | 37 | peano2zd 9451 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 + 1) ∈ ℤ) |
| 39 | 38 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → (𝑃 + 1) ∈ ℤ) |
| 40 | 1 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝐴 ⊆ ℕ) |
| 41 | 40, 36 | sseldd 3184 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑡 ∈ ℕ) |
| 42 | 41 | nnzd 9447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑡 ∈ ℤ) |
| 43 | | simprr 531 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑃 < 𝑡) |
| 44 | | nnltp1le 9386 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡)) |
| 45 | 3, 41, 44 | syl2an2r 595 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡)) |
| 46 | 43, 45 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → (𝑃 + 1) ≤ 𝑡) |
| 47 | | eluz2 9607 |
. . . . . . . . 9
⊢ (𝑡 ∈
(ℤ≥‘(𝑃 + 1)) ↔ ((𝑃 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ ∧ (𝑃 + 1) ≤ 𝑡)) |
| 48 | 39, 42, 46, 47 | syl3anbrc 1183 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑡 ∈ (ℤ≥‘(𝑃 + 1))) |
| 49 | 36, 48 | elind 3348 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑡 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
| 50 | | elex2 2779 |
. . . . . . 7
⊢ (𝑡 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
| 51 | 49, 50 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
| 52 | 35, 51 | rexlimddv 2619 |
. . . . 5
⊢ (𝜑 → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
| 53 | | nnmindc 12201 |
. . . . 5
⊢ (((𝐴 ∩
(ℤ≥‘(𝑃 + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ
DECID 𝑥
∈ (𝐴 ∩
(ℤ≥‘(𝑃 + 1))) ∧ ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) → inf((𝐴 ∩
(ℤ≥‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩
(ℤ≥‘(𝑃 + 1)))) |
| 54 | 7, 28, 52, 53 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → inf((𝐴 ∩ (ℤ≥‘(𝑃 + 1))), ℝ, < ) ∈
(𝐴 ∩
(ℤ≥‘(𝑃 + 1)))) |
| 55 | 54 | elin1d 3352 |
. . 3
⊢ (𝜑 → inf((𝐴 ∩ (ℤ≥‘(𝑃 + 1))), ℝ, < ) ∈
𝐴) |
| 56 | | fvoveq1 5945 |
. . . . . 6
⊢ (𝑦 = 𝑃 → (ℤ≥‘(𝑦 + 1)) =
(ℤ≥‘(𝑃 + 1))) |
| 57 | 56 | ineq2d 3364 |
. . . . 5
⊢ (𝑦 = 𝑃 → (𝐴 ∩ (ℤ≥‘(𝑦 + 1))) = (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
| 58 | 57 | infeq1d 7078 |
. . . 4
⊢ (𝑦 = 𝑃 → inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < ) =
inf((𝐴 ∩
(ℤ≥‘(𝑃 + 1))), ℝ, < )) |
| 59 | | eqidd 2197 |
. . . 4
⊢ (𝑧 = 𝑄 → inf((𝐴 ∩ (ℤ≥‘(𝑃 + 1))), ℝ, < ) =
inf((𝐴 ∩
(ℤ≥‘(𝑃 + 1))), ℝ, < )) |
| 60 | | eqid 2196 |
. . . 4
⊢ (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦
inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦
inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )) |
| 61 | 58, 59, 60 | ovmpog 6057 |
. . 3
⊢ ((𝑃 ∈ ℕ ∧ 𝑄 ∈ ℕ ∧ inf((𝐴 ∩
(ℤ≥‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴) → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ≥‘(𝑃 + 1))), ℝ, <
)) |
| 62 | 3, 5, 55, 61 | syl3anc 1249 |
. 2
⊢ (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ≥‘(𝑃 + 1))), ℝ, <
)) |
| 63 | 62, 55 | eqeltrd 2273 |
1
⊢ (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴) |