Step | Hyp | Ref
| Expression |
1 | | nninfdclemf.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
2 | | nninfdclemcl.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
3 | 1, 2 | sseldd 3148 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℕ) |
4 | | nninfdclemcl.q |
. . . 4
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
5 | 1, 4 | sseldd 3148 |
. . 3
⊢ (𝜑 → 𝑄 ∈ ℕ) |
6 | | inss1 3347 |
. . . . . 6
⊢ (𝐴 ∩
(ℤ≥‘(𝑃 + 1))) ⊆ 𝐴 |
7 | 6, 1 | sstrid 3158 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ⊆
ℕ) |
8 | | eleq1w 2231 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → (𝑥 ∈ 𝐴 ↔ 𝑠 ∈ 𝐴)) |
9 | 8 | dcbid 833 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑠 ∈ 𝐴)) |
10 | | nninfdclemf.dc |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
11 | 10 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ
DECID 𝑥
∈ 𝐴) |
12 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℕ) |
13 | 9, 11, 12 | rspcdva 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → DECID
𝑠 ∈ 𝐴) |
14 | 3 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → 𝑃 ∈ ℕ) |
15 | 14 | nnzd 9333 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → 𝑃 ∈ ℤ) |
16 | 15 | peano2zd 9337 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → (𝑃 + 1) ∈ ℤ) |
17 | 12 | nnzd 9333 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℤ) |
18 | | eluzdc 9569 |
. . . . . . . . . 10
⊢ (((𝑃 + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) →
DECID 𝑠
∈ (ℤ≥‘(𝑃 + 1))) |
19 | 16, 17, 18 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → DECID
𝑠 ∈
(ℤ≥‘(𝑃 + 1))) |
20 | | dcan2 929 |
. . . . . . . . 9
⊢
(DECID 𝑠 ∈ 𝐴 → (DECID 𝑠 ∈
(ℤ≥‘(𝑃 + 1)) → DECID (𝑠 ∈ 𝐴 ∧ 𝑠 ∈ (ℤ≥‘(𝑃 + 1))))) |
21 | 13, 19, 20 | sylc 62 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → DECID
(𝑠 ∈ 𝐴 ∧ 𝑠 ∈ (ℤ≥‘(𝑃 + 1)))) |
22 | | elin 3310 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ↔ (𝑠 ∈ 𝐴 ∧ 𝑠 ∈ (ℤ≥‘(𝑃 + 1)))) |
23 | 22 | dcbii 835 |
. . . . . . . 8
⊢
(DECID 𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ↔
DECID (𝑠
∈ 𝐴 ∧ 𝑠 ∈
(ℤ≥‘(𝑃 + 1)))) |
24 | 21, 23 | sylibr 133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → DECID
𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
25 | 24 | ralrimiva 2543 |
. . . . . 6
⊢ (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
26 | | eleq1w 2231 |
. . . . . . . 8
⊢ (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))))) |
27 | 26 | dcbid 833 |
. . . . . . 7
⊢ (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ↔
DECID 𝑥
∈ (𝐴 ∩
(ℤ≥‘(𝑃 + 1))))) |
28 | 27 | cbvralv 2696 |
. . . . . 6
⊢
(∀𝑠 ∈
ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) ↔ ∀𝑥 ∈ ℕ
DECID 𝑥
∈ (𝐴 ∩
(ℤ≥‘(𝑃 + 1)))) |
29 | 25, 28 | sylib 121 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
30 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑚 = 𝑃 → (𝑚 < 𝑛 ↔ 𝑃 < 𝑛)) |
31 | 30 | rexbidv 2471 |
. . . . . . . 8
⊢ (𝑚 = 𝑃 → (∃𝑛 ∈ 𝐴 𝑚 < 𝑛 ↔ ∃𝑛 ∈ 𝐴 𝑃 < 𝑛)) |
32 | | nninfdclemf.nb |
. . . . . . . 8
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
33 | 31, 32, 3 | rspcdva 2839 |
. . . . . . 7
⊢ (𝜑 → ∃𝑛 ∈ 𝐴 𝑃 < 𝑛) |
34 | | breq2 3993 |
. . . . . . . 8
⊢ (𝑛 = 𝑡 → (𝑃 < 𝑛 ↔ 𝑃 < 𝑡)) |
35 | 34 | cbvrexv 2697 |
. . . . . . 7
⊢
(∃𝑛 ∈
𝐴 𝑃 < 𝑛 ↔ ∃𝑡 ∈ 𝐴 𝑃 < 𝑡) |
36 | 33, 35 | sylib 121 |
. . . . . 6
⊢ (𝜑 → ∃𝑡 ∈ 𝐴 𝑃 < 𝑡) |
37 | | simprl 526 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑡 ∈ 𝐴) |
38 | 3 | nnzd 9333 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ ℤ) |
39 | 38 | peano2zd 9337 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 + 1) ∈ ℤ) |
40 | 39 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → (𝑃 + 1) ∈ ℤ) |
41 | 1 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝐴 ⊆ ℕ) |
42 | 41, 37 | sseldd 3148 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑡 ∈ ℕ) |
43 | 42 | nnzd 9333 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑡 ∈ ℤ) |
44 | | simprr 527 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑃 < 𝑡) |
45 | 3 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑃 ∈ ℕ) |
46 | | nnltp1le 9272 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡)) |
47 | 45, 42, 46 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡)) |
48 | 44, 47 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → (𝑃 + 1) ≤ 𝑡) |
49 | | eluz2 9493 |
. . . . . . . . 9
⊢ (𝑡 ∈
(ℤ≥‘(𝑃 + 1)) ↔ ((𝑃 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ ∧ (𝑃 + 1) ≤ 𝑡)) |
50 | 40, 43, 48, 49 | syl3anbrc 1176 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑡 ∈ (ℤ≥‘(𝑃 + 1))) |
51 | 37, 50 | elind 3312 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → 𝑡 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
52 | | elex2 2746 |
. . . . . . 7
⊢ (𝑡 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1))) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
53 | 51, 52 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐴 ∧ 𝑃 < 𝑡)) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
54 | 36, 53 | rexlimddv 2592 |
. . . . 5
⊢ (𝜑 → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
55 | | nnmindc 11989 |
. . . . 5
⊢ (((𝐴 ∩
(ℤ≥‘(𝑃 + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ
DECID 𝑥
∈ (𝐴 ∩
(ℤ≥‘(𝑃 + 1))) ∧ ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) → inf((𝐴 ∩
(ℤ≥‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩
(ℤ≥‘(𝑃 + 1)))) |
56 | 7, 29, 54, 55 | syl3anc 1233 |
. . . 4
⊢ (𝜑 → inf((𝐴 ∩ (ℤ≥‘(𝑃 + 1))), ℝ, < ) ∈
(𝐴 ∩
(ℤ≥‘(𝑃 + 1)))) |
57 | 56 | elin1d 3316 |
. . 3
⊢ (𝜑 → inf((𝐴 ∩ (ℤ≥‘(𝑃 + 1))), ℝ, < ) ∈
𝐴) |
58 | | fvoveq1 5876 |
. . . . . 6
⊢ (𝑦 = 𝑃 → (ℤ≥‘(𝑦 + 1)) =
(ℤ≥‘(𝑃 + 1))) |
59 | 58 | ineq2d 3328 |
. . . . 5
⊢ (𝑦 = 𝑃 → (𝐴 ∩ (ℤ≥‘(𝑦 + 1))) = (𝐴 ∩ (ℤ≥‘(𝑃 + 1)))) |
60 | 59 | infeq1d 6989 |
. . . 4
⊢ (𝑦 = 𝑃 → inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < ) =
inf((𝐴 ∩
(ℤ≥‘(𝑃 + 1))), ℝ, < )) |
61 | | eqidd 2171 |
. . . 4
⊢ (𝑧 = 𝑄 → inf((𝐴 ∩ (ℤ≥‘(𝑃 + 1))), ℝ, < ) =
inf((𝐴 ∩
(ℤ≥‘(𝑃 + 1))), ℝ, < )) |
62 | | eqid 2170 |
. . . 4
⊢ (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦
inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦
inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )) |
63 | 60, 61, 62 | ovmpog 5987 |
. . 3
⊢ ((𝑃 ∈ ℕ ∧ 𝑄 ∈ ℕ ∧ inf((𝐴 ∩
(ℤ≥‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴) → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ≥‘(𝑃 + 1))), ℝ, <
)) |
64 | 3, 5, 57, 63 | syl3anc 1233 |
. 2
⊢ (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ≥‘(𝑃 + 1))), ℝ, <
)) |
65 | 64, 57 | eqeltrd 2247 |
1
⊢ (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴) |