ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemcl GIF version

Theorem nninfdclemcl 12275
Description: Lemma for nninfdc 12280. (Contributed by Jim Kingdon, 25-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemcl.p (𝜑𝑃𝐴)
nninfdclemcl.q (𝜑𝑄𝐴)
Assertion
Ref Expression
nninfdclemcl (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴,𝑧   𝐴,𝑚,𝑛   𝑥,𝑃   𝑃,𝑚,𝑛   𝑦,𝑃,𝑧   𝑦,𝑄,𝑧   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑚,𝑛)   𝑄(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemcl
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemcl.p . . . 4 (𝜑𝑃𝐴)
31, 2sseldd 3129 . . 3 (𝜑𝑃 ∈ ℕ)
4 nninfdclemcl.q . . . 4 (𝜑𝑄𝐴)
51, 4sseldd 3129 . . 3 (𝜑𝑄 ∈ ℕ)
6 inss1 3328 . . . . . 6 (𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ 𝐴
76, 1sstrid 3139 . . . . 5 (𝜑 → (𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ ℕ)
8 eleq1w 2218 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝑥𝐴𝑠𝐴))
98dcbid 824 . . . . . . . . . 10 (𝑥 = 𝑠 → (DECID 𝑥𝐴DECID 𝑠𝐴))
10 nninfdclemf.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
1110adantr 274 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
12 simpr 109 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℕ)
139, 11, 12rspcdva 2821 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠𝐴)
143adantr 274 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑃 ∈ ℕ)
1514nnzd 9291 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → 𝑃 ∈ ℤ)
1615peano2zd 9295 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → (𝑃 + 1) ∈ ℤ)
1712nnzd 9291 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
18 eluzdc 9527 . . . . . . . . . 10 (((𝑃 + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) → DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)))
1916, 17, 18syl2anc 409 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)))
20 dcan 919 . . . . . . . . 9 (DECID 𝑠𝐴 → (DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1)))))
2113, 19, 20sylc 62 . . . . . . . 8 ((𝜑𝑠 ∈ ℕ) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
22 elin 3291 . . . . . . . . 9 (𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
2322dcbii 826 . . . . . . . 8 (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
2421, 23sylibr 133 . . . . . . 7 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
2524ralrimiva 2530 . . . . . 6 (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
26 eleq1w 2218 . . . . . . . 8 (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))))
2726dcbid 824 . . . . . . 7 (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))))
2827cbvralv 2680 . . . . . 6 (∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
2925, 28sylib 121 . . . . 5 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
30 breq1 3970 . . . . . . . . 9 (𝑚 = 𝑃 → (𝑚 < 𝑛𝑃 < 𝑛))
3130rexbidv 2458 . . . . . . . 8 (𝑚 = 𝑃 → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 𝑃 < 𝑛))
32 nninfdclemf.nb . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
3331, 32, 3rspcdva 2821 . . . . . . 7 (𝜑 → ∃𝑛𝐴 𝑃 < 𝑛)
34 breq2 3971 . . . . . . . 8 (𝑛 = 𝑡 → (𝑃 < 𝑛𝑃 < 𝑡))
3534cbvrexv 2681 . . . . . . 7 (∃𝑛𝐴 𝑃 < 𝑛 ↔ ∃𝑡𝐴 𝑃 < 𝑡)
3633, 35sylib 121 . . . . . 6 (𝜑 → ∃𝑡𝐴 𝑃 < 𝑡)
37 simprl 521 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡𝐴)
383nnzd 9291 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
3938peano2zd 9295 . . . . . . . . . 10 (𝜑 → (𝑃 + 1) ∈ ℤ)
4039adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 + 1) ∈ ℤ)
411adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝐴 ⊆ ℕ)
4241, 37sseldd 3129 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ ℕ)
4342nnzd 9291 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ ℤ)
44 simprr 522 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑃 < 𝑡)
453adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑃 ∈ ℕ)
46 nnltp1le 9233 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡))
4745, 42, 46syl2anc 409 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡))
4844, 47mpbid 146 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 + 1) ≤ 𝑡)
49 eluz2 9451 . . . . . . . . 9 (𝑡 ∈ (ℤ‘(𝑃 + 1)) ↔ ((𝑃 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ ∧ (𝑃 + 1) ≤ 𝑡))
5040, 43, 48, 49syl3anbrc 1166 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ (ℤ‘(𝑃 + 1)))
5137, 50elind 3293 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
52 elex2 2728 . . . . . . 7 (𝑡 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5351, 52syl 14 . . . . . 6 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5436, 53rexlimddv 2579 . . . . 5 (𝜑 → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
55 nnmindc 12273 . . . . 5 (((𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ∧ ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))) → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
567, 29, 54, 55syl3anc 1220 . . . 4 (𝜑 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5756elin1d 3297 . . 3 (𝜑 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴)
58 fvoveq1 5850 . . . . . 6 (𝑦 = 𝑃 → (ℤ‘(𝑦 + 1)) = (ℤ‘(𝑃 + 1)))
5958ineq2d 3309 . . . . 5 (𝑦 = 𝑃 → (𝐴 ∩ (ℤ‘(𝑦 + 1))) = (𝐴 ∩ (ℤ‘(𝑃 + 1))))
6059infeq1d 6959 . . . 4 (𝑦 = 𝑃 → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
61 eqidd 2158 . . . 4 (𝑧 = 𝑄 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
62 eqid 2157 . . . 4 (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
6360, 61, 62ovmpog 5958 . . 3 ((𝑃 ∈ ℕ ∧ 𝑄 ∈ ℕ ∧ inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴) → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
643, 5, 57, 63syl3anc 1220 . 2 (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
6564, 57eqeltrd 2234 1 (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 820   = wceq 1335  wex 1472  wcel 2128  wral 2435  wrex 2436  cin 3101  wss 3102   class class class wbr 3967  cfv 5173  (class class class)co 5827  cmpo 5829  infcinf 6930  cr 7734  1c1 7736   + caddc 7738   < clt 7915  cle 7916  cn 8839  cz 9173  cuz 9445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-addcom 7835  ax-addass 7837  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-0id 7843  ax-rnegex 7844  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-id 4256  df-po 4259  df-iso 4260  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-inn 8840  df-n0 9097  df-z 9174  df-uz 9446  df-fz 9920  df-fzo 10052
This theorem is referenced by:  nninfdclemf  12276  nninfdclemp1  12277
  Copyright terms: Public domain W3C validator