ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemcl GIF version

Theorem nninfdclemcl 12432
Description: Lemma for nninfdc 12437. (Contributed by Jim Kingdon, 25-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemcl.p (𝜑𝑃𝐴)
nninfdclemcl.q (𝜑𝑄𝐴)
Assertion
Ref Expression
nninfdclemcl (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴,𝑧   𝐴,𝑚,𝑛   𝑥,𝑃   𝑃,𝑚,𝑛   𝑦,𝑃,𝑧   𝑦,𝑄,𝑧   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑚,𝑛)   𝑄(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemcl
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemcl.p . . . 4 (𝜑𝑃𝐴)
31, 2sseldd 3156 . . 3 (𝜑𝑃 ∈ ℕ)
4 nninfdclemcl.q . . . 4 (𝜑𝑄𝐴)
51, 4sseldd 3156 . . 3 (𝜑𝑄 ∈ ℕ)
6 inss1 3355 . . . . . 6 (𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ 𝐴
76, 1sstrid 3166 . . . . 5 (𝜑 → (𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ ℕ)
8 eleq1w 2238 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝑥𝐴𝑠𝐴))
98dcbid 838 . . . . . . . . . 10 (𝑥 = 𝑠 → (DECID 𝑥𝐴DECID 𝑠𝐴))
10 nninfdclemf.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
1110adantr 276 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
12 simpr 110 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℕ)
139, 11, 12rspcdva 2846 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠𝐴)
143adantr 276 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑃 ∈ ℕ)
1514nnzd 9363 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → 𝑃 ∈ ℤ)
1615peano2zd 9367 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → (𝑃 + 1) ∈ ℤ)
1712nnzd 9363 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
18 eluzdc 9599 . . . . . . . . . 10 (((𝑃 + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) → DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)))
1916, 17, 18syl2anc 411 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)))
20 dcan2 934 . . . . . . . . 9 (DECID 𝑠𝐴 → (DECID 𝑠 ∈ (ℤ‘(𝑃 + 1)) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1)))))
2113, 19, 20sylc 62 . . . . . . . 8 ((𝜑𝑠 ∈ ℕ) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
22 elin 3318 . . . . . . . . 9 (𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
2322dcbii 840 . . . . . . . 8 (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ DECID (𝑠𝐴𝑠 ∈ (ℤ‘(𝑃 + 1))))
2421, 23sylibr 134 . . . . . . 7 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
2524ralrimiva 2550 . . . . . 6 (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
26 eleq1w 2238 . . . . . . . 8 (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))))
2726dcbid 838 . . . . . . 7 (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))))
2827cbvralv 2703 . . . . . 6 (∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ↔ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
2925, 28sylib 122 . . . . 5 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
30 breq1 4003 . . . . . . . . 9 (𝑚 = 𝑃 → (𝑚 < 𝑛𝑃 < 𝑛))
3130rexbidv 2478 . . . . . . . 8 (𝑚 = 𝑃 → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 𝑃 < 𝑛))
32 nninfdclemf.nb . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
3331, 32, 3rspcdva 2846 . . . . . . 7 (𝜑 → ∃𝑛𝐴 𝑃 < 𝑛)
34 breq2 4004 . . . . . . . 8 (𝑛 = 𝑡 → (𝑃 < 𝑛𝑃 < 𝑡))
3534cbvrexv 2704 . . . . . . 7 (∃𝑛𝐴 𝑃 < 𝑛 ↔ ∃𝑡𝐴 𝑃 < 𝑡)
3633, 35sylib 122 . . . . . 6 (𝜑 → ∃𝑡𝐴 𝑃 < 𝑡)
37 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡𝐴)
383nnzd 9363 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
3938peano2zd 9367 . . . . . . . . . 10 (𝜑 → (𝑃 + 1) ∈ ℤ)
4039adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 + 1) ∈ ℤ)
411adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝐴 ⊆ ℕ)
4241, 37sseldd 3156 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ ℕ)
4342nnzd 9363 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ ℤ)
44 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑃 < 𝑡)
453adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑃 ∈ ℕ)
46 nnltp1le 9302 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡))
4745, 42, 46syl2anc 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 < 𝑡 ↔ (𝑃 + 1) ≤ 𝑡))
4844, 47mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → (𝑃 + 1) ≤ 𝑡)
49 eluz2 9523 . . . . . . . . 9 (𝑡 ∈ (ℤ‘(𝑃 + 1)) ↔ ((𝑃 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ ∧ (𝑃 + 1) ≤ 𝑡))
5040, 43, 48, 49syl3anbrc 1181 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ (ℤ‘(𝑃 + 1)))
5137, 50elind 3320 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → 𝑡 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
52 elex2 2753 . . . . . . 7 (𝑡 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5351, 52syl 14 . . . . . 6 ((𝜑 ∧ (𝑡𝐴𝑃 < 𝑡)) → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5436, 53rexlimddv 2599 . . . . 5 (𝜑 → ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
55 nnmindc 12018 . . . . 5 (((𝐴 ∩ (ℤ‘(𝑃 + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))) ∧ ∃𝑟 𝑟 ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1)))) → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
567, 29, 54, 55syl3anc 1238 . . . 4 (𝜑 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘(𝑃 + 1))))
5756elin1d 3324 . . 3 (𝜑 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴)
58 fvoveq1 5892 . . . . . 6 (𝑦 = 𝑃 → (ℤ‘(𝑦 + 1)) = (ℤ‘(𝑃 + 1)))
5958ineq2d 3336 . . . . 5 (𝑦 = 𝑃 → (𝐴 ∩ (ℤ‘(𝑦 + 1))) = (𝐴 ∩ (ℤ‘(𝑃 + 1))))
6059infeq1d 7005 . . . 4 (𝑦 = 𝑃 → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
61 eqidd 2178 . . . 4 (𝑧 = 𝑄 → inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
62 eqid 2177 . . . 4 (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
6360, 61, 62ovmpog 6003 . . 3 ((𝑃 ∈ ℕ ∧ 𝑄 ∈ ℕ ∧ inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ) ∈ 𝐴) → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
643, 5, 57, 63syl3anc 1238 . 2 (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) = inf((𝐴 ∩ (ℤ‘(𝑃 + 1))), ℝ, < ))
6564, 57eqeltrd 2254 1 (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  cin 3128  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  cmpo 5871  infcinf 6976  cr 7801  1c1 7803   + caddc 7805   < clt 7982  cle 7983  cn 8908  cz 9242  cuz 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129
This theorem is referenced by:  nninfdclemf  12433  nninfdclemp1  12434
  Copyright terms: Public domain W3C validator