ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exfzdc GIF version

Theorem exfzdc 10333
Description: Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.)
Hypotheses
Ref Expression
exfzdc.1 (𝜑𝑀 ∈ ℤ)
exfzdc.2 (𝜑𝑁 ∈ ℤ)
exfzdc.3 ((𝜑𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓)
Assertion
Ref Expression
exfzdc (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁   𝜑,𝑛
Allowed substitution hint:   𝜓(𝑛)

Proof of Theorem exfzdc
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exfzdc.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 exfzdc.2 . . . . 5 (𝜑𝑁 ∈ ℤ)
3 eluz 9631 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
41, 2, 3syl2anc 411 . . . 4 (𝜑 → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
54biimpar 297 . . 3 ((𝜑𝑀𝑁) → 𝑁 ∈ (ℤ𝑀))
6 simpl 109 . . 3 ((𝜑𝑀𝑁) → 𝜑)
7 eluzfz2 10124 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
8 oveq2 5933 . . . . . . . 8 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
98rexeqdv 2700 . . . . . . 7 (𝑤 = 𝑀 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑀)𝜓))
109dcbid 839 . . . . . 6 (𝑤 = 𝑀 → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...𝑀)𝜓))
1110imbi2d 230 . . . . 5 (𝑤 = 𝑀 → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...𝑀)𝜓)))
12 oveq2 5933 . . . . . . . 8 (𝑤 = 𝑦 → (𝑀...𝑤) = (𝑀...𝑦))
1312rexeqdv 2700 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑦)𝜓))
1413dcbid 839 . . . . . 6 (𝑤 = 𝑦 → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...𝑦)𝜓))
1514imbi2d 230 . . . . 5 (𝑤 = 𝑦 → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...𝑦)𝜓)))
16 oveq2 5933 . . . . . . . 8 (𝑤 = (𝑦 + 1) → (𝑀...𝑤) = (𝑀...(𝑦 + 1)))
1716rexeqdv 2700 . . . . . . 7 (𝑤 = (𝑦 + 1) → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓))
1817dcbid 839 . . . . . 6 (𝑤 = (𝑦 + 1) → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓))
1918imbi2d 230 . . . . 5 (𝑤 = (𝑦 + 1) → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)))
20 oveq2 5933 . . . . . . . 8 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2120rexeqdv 2700 . . . . . . 7 (𝑤 = 𝑁 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑁)𝜓))
2221dcbid 839 . . . . . 6 (𝑤 = 𝑁 → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...𝑁)𝜓))
2322imbi2d 230 . . . . 5 (𝑤 = 𝑁 → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)))
24 eluzfz1 10123 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
2524adantl 277 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ (𝑀...𝑁))
26 exfzdc.3 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓)
2726ralrimiva 2570 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓)
2827adantr 276 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ𝑀)) → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓)
29 nfsbc1v 3008 . . . . . . . . . 10 𝑛[𝑀 / 𝑛]𝜓
3029nfdc 1673 . . . . . . . . 9 𝑛DECID [𝑀 / 𝑛]𝜓
31 sbceq1a 2999 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝜓[𝑀 / 𝑛]𝜓))
3231dcbid 839 . . . . . . . . 9 (𝑛 = 𝑀 → (DECID 𝜓DECID [𝑀 / 𝑛]𝜓))
3330, 32rspc 2862 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓DECID [𝑀 / 𝑛]𝜓))
3425, 28, 33sylc 62 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → DECID [𝑀 / 𝑛]𝜓)
351adantr 276 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
36 fzsn 10158 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3735, 36syl 14 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑀) = {𝑀})
3837rexeqdv 2700 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ𝑀)) → (∃𝑛 ∈ (𝑀...𝑀)𝜓 ↔ ∃𝑛 ∈ {𝑀}𝜓))
39 rexsns 3662 . . . . . . . . 9 (∃𝑛 ∈ {𝑀}𝜓[𝑀 / 𝑛]𝜓)
4038, 39bitrdi 196 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ𝑀)) → (∃𝑛 ∈ (𝑀...𝑀)𝜓[𝑀 / 𝑛]𝜓))
4140dcbid 839 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → (DECID𝑛 ∈ (𝑀...𝑀)𝜓DECID [𝑀 / 𝑛]𝜓))
4234, 41mpbird 167 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → DECID𝑛 ∈ (𝑀...𝑀)𝜓)
4342expcom 116 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝜑DECID𝑛 ∈ (𝑀...𝑀)𝜓))
44 simpr 110 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ (𝑀...𝑦)𝜓)
45 fzofzp1 10320 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑀..^𝑁) → (𝑦 + 1) ∈ (𝑀...𝑁))
4645ad2antrr 488 . . . . . . . . . . . 12 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (𝑦 + 1) ∈ (𝑀...𝑁))
4727ad2antlr 489 . . . . . . . . . . . 12 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓)
48 nfsbc1v 3008 . . . . . . . . . . . . . 14 𝑛[(𝑦 + 1) / 𝑛]𝜓
4948nfdc 1673 . . . . . . . . . . . . 13 𝑛DECID [(𝑦 + 1) / 𝑛]𝜓
50 sbceq1a 2999 . . . . . . . . . . . . . 14 (𝑛 = (𝑦 + 1) → (𝜓[(𝑦 + 1) / 𝑛]𝜓))
5150dcbid 839 . . . . . . . . . . . . 13 (𝑛 = (𝑦 + 1) → (DECID 𝜓DECID [(𝑦 + 1) / 𝑛]𝜓))
5249, 51rspc 2862 . . . . . . . . . . . 12 ((𝑦 + 1) ∈ (𝑀...𝑁) → (∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓DECID [(𝑦 + 1) / 𝑛]𝜓))
5346, 47, 52sylc 62 . . . . . . . . . . 11 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID [(𝑦 + 1) / 𝑛]𝜓)
54 rexsns 3662 . . . . . . . . . . . 12 (∃𝑛 ∈ {(𝑦 + 1)}𝜓[(𝑦 + 1) / 𝑛]𝜓)
5554dcbii 841 . . . . . . . . . . 11 (DECID𝑛 ∈ {(𝑦 + 1)}𝜓DECID [(𝑦 + 1) / 𝑛]𝜓)
5653, 55sylibr 134 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ {(𝑦 + 1)}𝜓)
57 dcor 937 . . . . . . . . . 10 (DECID𝑛 ∈ (𝑀...𝑦)𝜓 → (DECID𝑛 ∈ {(𝑦 + 1)}𝜓DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓)))
5844, 56, 57sylc 62 . . . . . . . . 9 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓))
59 rexun 3344 . . . . . . . . . 10 (∃𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓 ↔ (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓))
6059dcbii 841 . . . . . . . . 9 (DECID𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓))
6158, 60sylibr 134 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓)
62 elfzouz 10243 . . . . . . . . . . . 12 (𝑦 ∈ (𝑀..^𝑁) → 𝑦 ∈ (ℤ𝑀))
6362ad2antrr 488 . . . . . . . . . . 11 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → 𝑦 ∈ (ℤ𝑀))
64 fzsuc 10161 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
6563, 64syl 14 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
6665rexeqdv 2700 . . . . . . . . 9 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓 ↔ ∃𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓))
6766dcbid 839 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓DECID𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓))
6861, 67mpbird 167 . . . . . . 7 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)
6968exp31 364 . . . . . 6 (𝑦 ∈ (𝑀..^𝑁) → (𝜑 → (DECID𝑛 ∈ (𝑀...𝑦)𝜓DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)))
7069a2d 26 . . . . 5 (𝑦 ∈ (𝑀..^𝑁) → ((𝜑DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (𝜑DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)))
7111, 15, 19, 23, 43, 70fzind2 10332 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓))
727, 71syl 14 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓))
735, 6, 72sylc 62 . 2 ((𝜑𝑀𝑁) → DECID𝑛 ∈ (𝑀...𝑁)𝜓)
74 rex0 3469 . . . . 5 ¬ ∃𝑛 ∈ ∅ 𝜓
75 zltnle 9389 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
762, 1, 75syl2anc 411 . . . . . . . 8 (𝜑 → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
7776biimpar 297 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀𝑁) → 𝑁 < 𝑀)
78 fzn 10134 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
791, 2, 78syl2anc 411 . . . . . . . 8 (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
8079adantr 276 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀𝑁) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
8177, 80mpbid 147 . . . . . 6 ((𝜑 ∧ ¬ 𝑀𝑁) → (𝑀...𝑁) = ∅)
8281rexeqdv 2700 . . . . 5 ((𝜑 ∧ ¬ 𝑀𝑁) → (∃𝑛 ∈ (𝑀...𝑁)𝜓 ↔ ∃𝑛 ∈ ∅ 𝜓))
8374, 82mtbiri 676 . . . 4 ((𝜑 ∧ ¬ 𝑀𝑁) → ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓)
8483olcd 735 . . 3 ((𝜑 ∧ ¬ 𝑀𝑁) → (∃𝑛 ∈ (𝑀...𝑁)𝜓 ∨ ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓))
85 df-dc 836 . . 3 (DECID𝑛 ∈ (𝑀...𝑁)𝜓 ↔ (∃𝑛 ∈ (𝑀...𝑁)𝜓 ∨ ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓))
8684, 85sylibr 134 . 2 ((𝜑 ∧ ¬ 𝑀𝑁) → DECID𝑛 ∈ (𝑀...𝑁)𝜓)
87 zdcle 9419 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
88 exmiddc 837 . . . 4 (DECID 𝑀𝑁 → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
8987, 88syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
901, 2, 89syl2anc 411 . 2 (𝜑 → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
9173, 86, 90mpjaodan 799 1 (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  wrex 2476  [wsbc 2989  cun 3155  c0 3451  {csn 3623   class class class wbr 4034  cfv 5259  (class class class)co 5925  1c1 7897   + caddc 7899   < clt 8078  cle 8079  cz 9343  cuz 9618  ...cfz 10100  ..^cfzo 10234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235
This theorem is referenced by:  prmind2  12313  4sqlemafi  12589  4sqexercise1  12592  4sqexercise2  12593  4sqlemsdc  12594
  Copyright terms: Public domain W3C validator