ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exfzdc GIF version

Theorem exfzdc 10010
Description: Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.)
Hypotheses
Ref Expression
exfzdc.1 (𝜑𝑀 ∈ ℤ)
exfzdc.2 (𝜑𝑁 ∈ ℤ)
exfzdc.3 ((𝜑𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓)
Assertion
Ref Expression
exfzdc (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁   𝜑,𝑛
Allowed substitution hint:   𝜓(𝑛)

Proof of Theorem exfzdc
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exfzdc.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 exfzdc.2 . . . . 5 (𝜑𝑁 ∈ ℤ)
3 eluz 9332 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
41, 2, 3syl2anc 408 . . . 4 (𝜑 → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
54biimpar 295 . . 3 ((𝜑𝑀𝑁) → 𝑁 ∈ (ℤ𝑀))
6 simpl 108 . . 3 ((𝜑𝑀𝑁) → 𝜑)
7 eluzfz2 9805 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
8 oveq2 5775 . . . . . . . 8 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
98rexeqdv 2631 . . . . . . 7 (𝑤 = 𝑀 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑀)𝜓))
109dcbid 823 . . . . . 6 (𝑤 = 𝑀 → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...𝑀)𝜓))
1110imbi2d 229 . . . . 5 (𝑤 = 𝑀 → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...𝑀)𝜓)))
12 oveq2 5775 . . . . . . . 8 (𝑤 = 𝑦 → (𝑀...𝑤) = (𝑀...𝑦))
1312rexeqdv 2631 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑦)𝜓))
1413dcbid 823 . . . . . 6 (𝑤 = 𝑦 → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...𝑦)𝜓))
1514imbi2d 229 . . . . 5 (𝑤 = 𝑦 → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...𝑦)𝜓)))
16 oveq2 5775 . . . . . . . 8 (𝑤 = (𝑦 + 1) → (𝑀...𝑤) = (𝑀...(𝑦 + 1)))
1716rexeqdv 2631 . . . . . . 7 (𝑤 = (𝑦 + 1) → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓))
1817dcbid 823 . . . . . 6 (𝑤 = (𝑦 + 1) → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓))
1918imbi2d 229 . . . . 5 (𝑤 = (𝑦 + 1) → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)))
20 oveq2 5775 . . . . . . . 8 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2120rexeqdv 2631 . . . . . . 7 (𝑤 = 𝑁 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑁)𝜓))
2221dcbid 823 . . . . . 6 (𝑤 = 𝑁 → (DECID𝑛 ∈ (𝑀...𝑤)𝜓DECID𝑛 ∈ (𝑀...𝑁)𝜓))
2322imbi2d 229 . . . . 5 (𝑤 = 𝑁 → ((𝜑DECID𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)))
24 eluzfz1 9804 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
2524adantl 275 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ (𝑀...𝑁))
26 exfzdc.3 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓)
2726ralrimiva 2503 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓)
2827adantr 274 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ𝑀)) → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓)
29 nfsbc1v 2922 . . . . . . . . . 10 𝑛[𝑀 / 𝑛]𝜓
3029nfdc 1637 . . . . . . . . 9 𝑛DECID [𝑀 / 𝑛]𝜓
31 sbceq1a 2913 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝜓[𝑀 / 𝑛]𝜓))
3231dcbid 823 . . . . . . . . 9 (𝑛 = 𝑀 → (DECID 𝜓DECID [𝑀 / 𝑛]𝜓))
3330, 32rspc 2778 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓DECID [𝑀 / 𝑛]𝜓))
3425, 28, 33sylc 62 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → DECID [𝑀 / 𝑛]𝜓)
351adantr 274 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
36 fzsn 9839 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3735, 36syl 14 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ𝑀)) → (𝑀...𝑀) = {𝑀})
3837rexeqdv 2631 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ𝑀)) → (∃𝑛 ∈ (𝑀...𝑀)𝜓 ↔ ∃𝑛 ∈ {𝑀}𝜓))
39 rexsns 3558 . . . . . . . . 9 (∃𝑛 ∈ {𝑀}𝜓[𝑀 / 𝑛]𝜓)
4038, 39syl6bb 195 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ𝑀)) → (∃𝑛 ∈ (𝑀...𝑀)𝜓[𝑀 / 𝑛]𝜓))
4140dcbid 823 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → (DECID𝑛 ∈ (𝑀...𝑀)𝜓DECID [𝑀 / 𝑛]𝜓))
4234, 41mpbird 166 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → DECID𝑛 ∈ (𝑀...𝑀)𝜓)
4342expcom 115 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝜑DECID𝑛 ∈ (𝑀...𝑀)𝜓))
44 simpr 109 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ (𝑀...𝑦)𝜓)
45 fzofzp1 9997 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑀..^𝑁) → (𝑦 + 1) ∈ (𝑀...𝑁))
4645ad2antrr 479 . . . . . . . . . . . 12 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (𝑦 + 1) ∈ (𝑀...𝑁))
4727ad2antlr 480 . . . . . . . . . . . 12 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓)
48 nfsbc1v 2922 . . . . . . . . . . . . . 14 𝑛[(𝑦 + 1) / 𝑛]𝜓
4948nfdc 1637 . . . . . . . . . . . . 13 𝑛DECID [(𝑦 + 1) / 𝑛]𝜓
50 sbceq1a 2913 . . . . . . . . . . . . . 14 (𝑛 = (𝑦 + 1) → (𝜓[(𝑦 + 1) / 𝑛]𝜓))
5150dcbid 823 . . . . . . . . . . . . 13 (𝑛 = (𝑦 + 1) → (DECID 𝜓DECID [(𝑦 + 1) / 𝑛]𝜓))
5249, 51rspc 2778 . . . . . . . . . . . 12 ((𝑦 + 1) ∈ (𝑀...𝑁) → (∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓DECID [(𝑦 + 1) / 𝑛]𝜓))
5346, 47, 52sylc 62 . . . . . . . . . . 11 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID [(𝑦 + 1) / 𝑛]𝜓)
54 rexsns 3558 . . . . . . . . . . . 12 (∃𝑛 ∈ {(𝑦 + 1)}𝜓[(𝑦 + 1) / 𝑛]𝜓)
5554dcbii 825 . . . . . . . . . . 11 (DECID𝑛 ∈ {(𝑦 + 1)}𝜓DECID [(𝑦 + 1) / 𝑛]𝜓)
5653, 55sylibr 133 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ {(𝑦 + 1)}𝜓)
57 dcor 919 . . . . . . . . . 10 (DECID𝑛 ∈ (𝑀...𝑦)𝜓 → (DECID𝑛 ∈ {(𝑦 + 1)}𝜓DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓)))
5844, 56, 57sylc 62 . . . . . . . . 9 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓))
59 rexun 3251 . . . . . . . . . 10 (∃𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓 ↔ (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓))
6059dcbii 825 . . . . . . . . 9 (DECID𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓))
6158, 60sylibr 133 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓)
62 elfzouz 9921 . . . . . . . . . . . 12 (𝑦 ∈ (𝑀..^𝑁) → 𝑦 ∈ (ℤ𝑀))
6362ad2antrr 479 . . . . . . . . . . 11 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → 𝑦 ∈ (ℤ𝑀))
64 fzsuc 9842 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
6563, 64syl 14 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
6665rexeqdv 2631 . . . . . . . . 9 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓 ↔ ∃𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓))
6766dcbid 823 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓DECID𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓))
6861, 67mpbird 166 . . . . . . 7 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID𝑛 ∈ (𝑀...𝑦)𝜓) → DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)
6968exp31 361 . . . . . 6 (𝑦 ∈ (𝑀..^𝑁) → (𝜑 → (DECID𝑛 ∈ (𝑀...𝑦)𝜓DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)))
7069a2d 26 . . . . 5 (𝑦 ∈ (𝑀..^𝑁) → ((𝜑DECID𝑛 ∈ (𝑀...𝑦)𝜓) → (𝜑DECID𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)))
7111, 15, 19, 23, 43, 70fzind2 10009 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓))
727, 71syl 14 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓))
735, 6, 72sylc 62 . 2 ((𝜑𝑀𝑁) → DECID𝑛 ∈ (𝑀...𝑁)𝜓)
74 rex0 3375 . . . . 5 ¬ ∃𝑛 ∈ ∅ 𝜓
75 zltnle 9093 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
762, 1, 75syl2anc 408 . . . . . . . 8 (𝜑 → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
7776biimpar 295 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀𝑁) → 𝑁 < 𝑀)
78 fzn 9815 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
791, 2, 78syl2anc 408 . . . . . . . 8 (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
8079adantr 274 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀𝑁) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
8177, 80mpbid 146 . . . . . 6 ((𝜑 ∧ ¬ 𝑀𝑁) → (𝑀...𝑁) = ∅)
8281rexeqdv 2631 . . . . 5 ((𝜑 ∧ ¬ 𝑀𝑁) → (∃𝑛 ∈ (𝑀...𝑁)𝜓 ↔ ∃𝑛 ∈ ∅ 𝜓))
8374, 82mtbiri 664 . . . 4 ((𝜑 ∧ ¬ 𝑀𝑁) → ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓)
8483olcd 723 . . 3 ((𝜑 ∧ ¬ 𝑀𝑁) → (∃𝑛 ∈ (𝑀...𝑁)𝜓 ∨ ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓))
85 df-dc 820 . . 3 (DECID𝑛 ∈ (𝑀...𝑁)𝜓 ↔ (∃𝑛 ∈ (𝑀...𝑁)𝜓 ∨ ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓))
8684, 85sylibr 133 . 2 ((𝜑 ∧ ¬ 𝑀𝑁) → DECID𝑛 ∈ (𝑀...𝑁)𝜓)
87 zdcle 9120 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
88 exmiddc 821 . . . 4 (DECID 𝑀𝑁 → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
8987, 88syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
901, 2, 89syl2anc 408 . 2 (𝜑 → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
9173, 86, 90mpjaodan 787 1 (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  wral 2414  wrex 2415  [wsbc 2904  cun 3064  c0 3358  {csn 3522   class class class wbr 3924  cfv 5118  (class class class)co 5767  1c1 7614   + caddc 7616   < clt 7793  cle 7794  cz 9047  cuz 9319  ...cfz 9783  ..^cfzo 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-fzo 9913
This theorem is referenced by:  prmind2  11790
  Copyright terms: Public domain W3C validator