Step | Hyp | Ref
| Expression |
1 | | exfzdc.1 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | exfzdc.2 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
3 | | eluz 9479 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
4 | 1, 2, 3 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
5 | 4 | biimpar 295 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
6 | | simpl 108 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝜑) |
7 | | eluzfz2 9967 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
8 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀)) |
9 | 8 | rexeqdv 2668 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑀)𝜓)) |
10 | 9 | dcbid 828 |
. . . . . 6
⊢ (𝑤 = 𝑀 → (DECID ∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ DECID ∃𝑛 ∈ (𝑀...𝑀)𝜓)) |
11 | 10 | imbi2d 229 |
. . . . 5
⊢ (𝑤 = 𝑀 → ((𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑀)𝜓))) |
12 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑀...𝑤) = (𝑀...𝑦)) |
13 | 12 | rexeqdv 2668 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑦)𝜓)) |
14 | 13 | dcbid 828 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (DECID ∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓)) |
15 | 14 | imbi2d 229 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓))) |
16 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 + 1) → (𝑀...𝑤) = (𝑀...(𝑦 + 1))) |
17 | 16 | rexeqdv 2668 |
. . . . . . 7
⊢ (𝑤 = (𝑦 + 1) → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)) |
18 | 17 | dcbid 828 |
. . . . . 6
⊢ (𝑤 = (𝑦 + 1) → (DECID
∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ DECID ∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓)) |
19 | 18 | imbi2d 229 |
. . . . 5
⊢ (𝑤 = (𝑦 + 1) → ((𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑 → DECID ∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓))) |
20 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁)) |
21 | 20 | rexeqdv 2668 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ ∃𝑛 ∈ (𝑀...𝑁)𝜓)) |
22 | 21 | dcbid 828 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (DECID ∃𝑛 ∈ (𝑀...𝑤)𝜓 ↔ DECID ∃𝑛 ∈ (𝑀...𝑁)𝜓)) |
23 | 22 | imbi2d 229 |
. . . . 5
⊢ (𝑤 = 𝑁 → ((𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑤)𝜓) ↔ (𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑁)𝜓))) |
24 | | eluzfz1 9966 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
25 | 24 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ (𝑀...𝑁)) |
26 | | exfzdc.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓) |
27 | 26 | ralrimiva 2539 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓) |
28 | 27 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓) |
29 | | nfsbc1v 2969 |
. . . . . . . . . 10
⊢
Ⅎ𝑛[𝑀 / 𝑛]𝜓 |
30 | 29 | nfdc 1647 |
. . . . . . . . 9
⊢
Ⅎ𝑛DECID [𝑀 / 𝑛]𝜓 |
31 | | sbceq1a 2960 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑀 → (𝜓 ↔ [𝑀 / 𝑛]𝜓)) |
32 | 31 | dcbid 828 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (DECID 𝜓 ↔ DECID
[𝑀 / 𝑛]𝜓)) |
33 | 30, 32 | rspc 2824 |
. . . . . . . 8
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓 → DECID [𝑀 / 𝑛]𝜓)) |
34 | 25, 28, 33 | sylc 62 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → DECID
[𝑀 / 𝑛]𝜓) |
35 | 1 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
36 | | fzsn 10001 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
37 | 35, 36 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑀...𝑀) = {𝑀}) |
38 | 37 | rexeqdv 2668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (∃𝑛 ∈ (𝑀...𝑀)𝜓 ↔ ∃𝑛 ∈ {𝑀}𝜓)) |
39 | | rexsns 3615 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
{𝑀}𝜓 ↔ [𝑀 / 𝑛]𝜓) |
40 | 38, 39 | bitrdi 195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (∃𝑛 ∈ (𝑀...𝑀)𝜓 ↔ [𝑀 / 𝑛]𝜓)) |
41 | 40 | dcbid 828 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (DECID
∃𝑛 ∈ (𝑀...𝑀)𝜓 ↔ DECID [𝑀 / 𝑛]𝜓)) |
42 | 34, 41 | mpbird 166 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → DECID
∃𝑛 ∈ (𝑀...𝑀)𝜓) |
43 | 42 | expcom 115 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑀)𝜓)) |
44 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) |
45 | | fzofzp1 10162 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝑦 + 1) ∈ (𝑀...𝑁)) |
46 | 45 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → (𝑦 + 1) ∈ (𝑀...𝑁)) |
47 | 27 | ad2antlr 481 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → ∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓) |
48 | | nfsbc1v 2969 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛[(𝑦 + 1) / 𝑛]𝜓 |
49 | 48 | nfdc 1647 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛DECID [(𝑦 + 1) / 𝑛]𝜓 |
50 | | sbceq1a 2960 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑦 + 1) → (𝜓 ↔ [(𝑦 + 1) / 𝑛]𝜓)) |
51 | 50 | dcbid 828 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑦 + 1) → (DECID 𝜓 ↔ DECID
[(𝑦 + 1) / 𝑛]𝜓)) |
52 | 49, 51 | rspc 2824 |
. . . . . . . . . . . 12
⊢ ((𝑦 + 1) ∈ (𝑀...𝑁) → (∀𝑛 ∈ (𝑀...𝑁)DECID 𝜓 → DECID [(𝑦 + 1) / 𝑛]𝜓)) |
53 | 46, 47, 52 | sylc 62 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → DECID [(𝑦 + 1) / 𝑛]𝜓) |
54 | | rexsns 3615 |
. . . . . . . . . . . 12
⊢
(∃𝑛 ∈
{(𝑦 + 1)}𝜓 ↔ [(𝑦 + 1) / 𝑛]𝜓) |
55 | 54 | dcbii 830 |
. . . . . . . . . . 11
⊢
(DECID ∃𝑛 ∈ {(𝑦 + 1)}𝜓 ↔ DECID [(𝑦 + 1) / 𝑛]𝜓) |
56 | 53, 55 | sylibr 133 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → DECID ∃𝑛 ∈ {(𝑦 + 1)}𝜓) |
57 | | dcor 925 |
. . . . . . . . . 10
⊢
(DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓 → (DECID ∃𝑛 ∈ {(𝑦 + 1)}𝜓 → DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓))) |
58 | 44, 56, 57 | sylc 62 |
. . . . . . . . 9
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓)) |
59 | | rexun 3302 |
. . . . . . . . . 10
⊢
(∃𝑛 ∈
((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓 ↔ (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓)) |
60 | 59 | dcbii 830 |
. . . . . . . . 9
⊢
(DECID ∃𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓 ↔ DECID (∃𝑛 ∈ (𝑀...𝑦)𝜓 ∨ ∃𝑛 ∈ {(𝑦 + 1)}𝜓)) |
61 | 58, 60 | sylibr 133 |
. . . . . . . 8
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → DECID ∃𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓) |
62 | | elfzouz 10086 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝑀..^𝑁) → 𝑦 ∈ (ℤ≥‘𝑀)) |
63 | 62 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → 𝑦 ∈ (ℤ≥‘𝑀)) |
64 | | fzsuc 10004 |
. . . . . . . . . . 11
⊢ (𝑦 ∈
(ℤ≥‘𝑀) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)})) |
65 | 63, 64 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)})) |
66 | 65 | rexeqdv 2668 |
. . . . . . . . 9
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → (∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓 ↔ ∃𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓)) |
67 | 66 | dcbid 828 |
. . . . . . . 8
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → (DECID ∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓 ↔ DECID ∃𝑛 ∈ ((𝑀...𝑦) ∪ {(𝑦 + 1)})𝜓)) |
68 | 61, 67 | mpbird 166 |
. . . . . . 7
⊢ (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝜑) ∧ DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → DECID ∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓) |
69 | 68 | exp31 362 |
. . . . . 6
⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜑 → (DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓 → DECID ∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓))) |
70 | 69 | a2d 26 |
. . . . 5
⊢ (𝑦 ∈ (𝑀..^𝑁) → ((𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑦)𝜓) → (𝜑 → DECID ∃𝑛 ∈ (𝑀...(𝑦 + 1))𝜓))) |
71 | 11, 15, 19, 23, 43, 70 | fzind2 10174 |
. . . 4
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑁)𝜓)) |
72 | 7, 71 | syl 14 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → DECID ∃𝑛 ∈ (𝑀...𝑁)𝜓)) |
73 | 5, 6, 72 | sylc 62 |
. 2
⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → DECID ∃𝑛 ∈ (𝑀...𝑁)𝜓) |
74 | | rex0 3426 |
. . . . 5
⊢ ¬
∃𝑛 ∈ ∅
𝜓 |
75 | | zltnle 9237 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁)) |
76 | 2, 1, 75 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁)) |
77 | 76 | biimpar 295 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑀 ≤ 𝑁) → 𝑁 < 𝑀) |
78 | | fzn 9977 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) |
79 | 1, 2, 78 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) |
80 | 79 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑀 ≤ 𝑁) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) |
81 | 77, 80 | mpbid 146 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑀 ≤ 𝑁) → (𝑀...𝑁) = ∅) |
82 | 81 | rexeqdv 2668 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑀 ≤ 𝑁) → (∃𝑛 ∈ (𝑀...𝑁)𝜓 ↔ ∃𝑛 ∈ ∅ 𝜓)) |
83 | 74, 82 | mtbiri 665 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑀 ≤ 𝑁) → ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓) |
84 | 83 | olcd 724 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑀 ≤ 𝑁) → (∃𝑛 ∈ (𝑀...𝑁)𝜓 ∨ ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓)) |
85 | | df-dc 825 |
. . 3
⊢
(DECID ∃𝑛 ∈ (𝑀...𝑁)𝜓 ↔ (∃𝑛 ∈ (𝑀...𝑁)𝜓 ∨ ¬ ∃𝑛 ∈ (𝑀...𝑁)𝜓)) |
86 | 84, 85 | sylibr 133 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑀 ≤ 𝑁) → DECID ∃𝑛 ∈ (𝑀...𝑁)𝜓) |
87 | | zdcle 9267 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑀 ≤
𝑁) |
88 | | exmiddc 826 |
. . . 4
⊢
(DECID 𝑀 ≤ 𝑁 → (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) |
89 | 87, 88 | syl 14 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) |
90 | 1, 2, 89 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) |
91 | 73, 86, 90 | mpjaodan 788 |
1
⊢ (𝜑 → DECID
∃𝑛 ∈ (𝑀...𝑁)𝜓) |