![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmidexmid | GIF version |
Description: EXMID implies that an
arbitrary proposition is decidable. That is,
EXMID captures the usual meaning of excluded middle when stated in terms
of propositions.
To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 844, peircedc 915, or condc 854. (Contributed by Jim Kingdon, 18-Jun-2022.) |
Ref | Expression |
---|---|
exmidexmid | ⊢ (EXMID → DECID 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3252 | . . 3 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
2 | df-exmid 4207 | . . . 4 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
3 | p0ex 4200 | . . . . . 6 ⊢ {∅} ∈ V | |
4 | 3 | rabex 4159 | . . . . 5 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
5 | sseq1 3190 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) | |
6 | eleq2 2251 | . . . . . . 7 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ 𝑥 ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) | |
7 | 6 | dcbid 839 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (DECID ∅ ∈ 𝑥 ↔ DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
8 | 5, 7 | imbi12d 234 | . . . . 5 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))) |
9 | 4, 8 | spcv 2843 | . . . 4 ⊢ (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
10 | 2, 9 | sylbi 121 | . . 3 ⊢ (EXMID → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
11 | 1, 10 | mpi 15 | . 2 ⊢ (EXMID → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) |
12 | 0ex 4142 | . . . . 5 ⊢ ∅ ∈ V | |
13 | 12 | snid 3635 | . . . 4 ⊢ ∅ ∈ {∅} |
14 | biidd 172 | . . . . 5 ⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) | |
15 | 14 | elrab 2905 | . . . 4 ⊢ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑)) |
16 | 13, 15 | mpbiran 941 | . . 3 ⊢ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
17 | 16 | dcbii 841 | . 2 ⊢ (DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ DECID 𝜑) |
18 | 11, 17 | sylib 122 | 1 ⊢ (EXMID → DECID 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 DECID wdc 835 ∀wal 1361 = wceq 1363 ∈ wcel 2158 {crab 2469 ⊆ wss 3141 ∅c0 3434 {csn 3604 EXMIDwem 4206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rab 2474 df-v 2751 df-dif 3143 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-exmid 4207 |
This theorem is referenced by: exmidn0m 4213 exmid0el 4216 exmidel 4217 exmidundif 4218 exmidundifim 4219 sbthlemi3 6972 sbthlemi5 6974 sbthlemi6 6975 exmidomniim 7153 exmidfodomrlemim 7214 exmidontriimlem1 7234 exmidapne 7273 |
Copyright terms: Public domain | W3C validator |