| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidexmid | GIF version | ||
| Description: EXMID implies that an
arbitrary proposition is decidable. That is,
EXMID captures the usual meaning of excluded middle when stated in terms
of propositions.
To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 847, peircedc 918, or condc 857. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidexmid | ⊢ (EXMID → DECID 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3289 | . . 3 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
| 2 | df-exmid 4258 | . . . 4 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
| 3 | p0ex 4251 | . . . . . 6 ⊢ {∅} ∈ V | |
| 4 | 3 | rabex 4207 | . . . . 5 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
| 5 | sseq1 3227 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) | |
| 6 | eleq2 2273 | . . . . . . 7 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ 𝑥 ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) | |
| 7 | 6 | dcbid 842 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (DECID ∅ ∈ 𝑥 ↔ DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 8 | 5, 7 | imbi12d 234 | . . . . 5 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))) |
| 9 | 4, 8 | spcv 2877 | . . . 4 ⊢ (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 10 | 2, 9 | sylbi 121 | . . 3 ⊢ (EXMID → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 11 | 1, 10 | mpi 15 | . 2 ⊢ (EXMID → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) |
| 12 | 0ex 4190 | . . . . 5 ⊢ ∅ ∈ V | |
| 13 | 12 | snid 3677 | . . . 4 ⊢ ∅ ∈ {∅} |
| 14 | biidd 172 | . . . . 5 ⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) | |
| 15 | 14 | elrab 2939 | . . . 4 ⊢ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑)) |
| 16 | 13, 15 | mpbiran 945 | . . 3 ⊢ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
| 17 | 16 | dcbii 844 | . 2 ⊢ (DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ DECID 𝜑) |
| 18 | 11, 17 | sylib 122 | 1 ⊢ (EXMID → DECID 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 838 ∀wal 1373 = wceq 1375 ∈ wcel 2180 {crab 2492 ⊆ wss 3177 ∅c0 3471 {csn 3646 EXMIDwem 4257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-v 2781 df-dif 3179 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-exmid 4258 |
| This theorem is referenced by: exmidn0m 4264 exmid0el 4267 exmidel 4268 exmidundif 4269 exmidundifim 4270 exmidpw2en 7042 sbthlemi3 7094 sbthlemi5 7096 sbthlemi6 7097 exmidomniim 7276 exmidfodomrlemim 7347 exmidontriimlem1 7371 exmidapne 7414 |
| Copyright terms: Public domain | W3C validator |