| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidexmid | GIF version | ||
| Description: EXMID implies that an
arbitrary proposition is decidable. That is,
EXMID captures the usual meaning of excluded middle when stated in terms
of propositions.
To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 848, peircedc 919, or condc 858. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidexmid | ⊢ (EXMID → DECID 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 | . . 3 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
| 2 | df-exmid 4279 | . . . 4 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
| 3 | p0ex 4272 | . . . . . 6 ⊢ {∅} ∈ V | |
| 4 | 3 | rabex 4228 | . . . . 5 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
| 5 | sseq1 3247 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) | |
| 6 | eleq2 2293 | . . . . . . 7 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ 𝑥 ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) | |
| 7 | 6 | dcbid 843 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (DECID ∅ ∈ 𝑥 ↔ DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 8 | 5, 7 | imbi12d 234 | . . . . 5 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))) |
| 9 | 4, 8 | spcv 2897 | . . . 4 ⊢ (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 10 | 2, 9 | sylbi 121 | . . 3 ⊢ (EXMID → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 11 | 1, 10 | mpi 15 | . 2 ⊢ (EXMID → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) |
| 12 | 0ex 4211 | . . . . 5 ⊢ ∅ ∈ V | |
| 13 | 12 | snid 3697 | . . . 4 ⊢ ∅ ∈ {∅} |
| 14 | biidd 172 | . . . . 5 ⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) | |
| 15 | 14 | elrab 2959 | . . . 4 ⊢ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑)) |
| 16 | 13, 15 | mpbiran 946 | . . 3 ⊢ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
| 17 | 16 | dcbii 845 | . 2 ⊢ (DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ DECID 𝜑) |
| 18 | 11, 17 | sylib 122 | 1 ⊢ (EXMID → DECID 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 839 ∀wal 1393 = wceq 1395 ∈ wcel 2200 {crab 2512 ⊆ wss 3197 ∅c0 3491 {csn 3666 EXMIDwem 4278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-exmid 4279 |
| This theorem is referenced by: exmidn0m 4285 exmid0el 4288 exmidel 4289 exmidundif 4290 exmidundifim 4291 exmidpw2en 7082 sbthlemi3 7134 sbthlemi5 7136 sbthlemi6 7137 exmidomniim 7316 exmidfodomrlemim 7387 exmidontriimlem1 7411 exmidapne 7454 pw1dceq 16399 |
| Copyright terms: Public domain | W3C validator |