| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidexmid | GIF version | ||
| Description: EXMID implies that an
arbitrary proposition is decidable. That is,
EXMID captures the usual meaning of excluded middle when stated in terms
of propositions.
To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 844, peircedc 915, or condc 854. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidexmid | ⊢ (EXMID → DECID 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3269 | . . 3 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
| 2 | df-exmid 4229 | . . . 4 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
| 3 | p0ex 4222 | . . . . . 6 ⊢ {∅} ∈ V | |
| 4 | 3 | rabex 4178 | . . . . 5 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
| 5 | sseq1 3207 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) | |
| 6 | eleq2 2260 | . . . . . . 7 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ 𝑥 ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) | |
| 7 | 6 | dcbid 839 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (DECID ∅ ∈ 𝑥 ↔ DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 8 | 5, 7 | imbi12d 234 | . . . . 5 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))) |
| 9 | 4, 8 | spcv 2858 | . . . 4 ⊢ (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 10 | 2, 9 | sylbi 121 | . . 3 ⊢ (EXMID → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 11 | 1, 10 | mpi 15 | . 2 ⊢ (EXMID → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) |
| 12 | 0ex 4161 | . . . . 5 ⊢ ∅ ∈ V | |
| 13 | 12 | snid 3654 | . . . 4 ⊢ ∅ ∈ {∅} |
| 14 | biidd 172 | . . . . 5 ⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) | |
| 15 | 14 | elrab 2920 | . . . 4 ⊢ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑)) |
| 16 | 13, 15 | mpbiran 942 | . . 3 ⊢ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
| 17 | 16 | dcbii 841 | . 2 ⊢ (DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ DECID 𝜑) |
| 18 | 11, 17 | sylib 122 | 1 ⊢ (EXMID → DECID 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 835 ∀wal 1362 = wceq 1364 ∈ wcel 2167 {crab 2479 ⊆ wss 3157 ∅c0 3451 {csn 3623 EXMIDwem 4228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-exmid 4229 |
| This theorem is referenced by: exmidn0m 4235 exmid0el 4238 exmidel 4239 exmidundif 4240 exmidundifim 4241 exmidpw2en 6982 sbthlemi3 7034 sbthlemi5 7036 sbthlemi6 7037 exmidomniim 7216 exmidfodomrlemim 7280 exmidontriimlem1 7304 exmidapne 7343 |
| Copyright terms: Public domain | W3C validator |