ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidexmid GIF version

Theorem exmidexmid 4208
Description: EXMID implies that an arbitrary proposition is decidable. That is, EXMID captures the usual meaning of excluded middle when stated in terms of propositions.

To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 844, peircedc 915, or condc 854.

(Contributed by Jim Kingdon, 18-Jun-2022.)

Assertion
Ref Expression
exmidexmid (EXMIDDECID 𝜑)

Proof of Theorem exmidexmid
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3252 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}
2 df-exmid 4207 . . . 4 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
3 p0ex 4200 . . . . . 6 {∅} ∈ V
43rabex 4159 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ V
5 sseq1 3190 . . . . . 6 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}))
6 eleq2 2251 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ 𝑥 ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
76dcbid 839 . . . . . 6 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (DECID ∅ ∈ 𝑥DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
85, 7imbi12d 234 . . . . 5 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
94, 8spcv 2843 . . . 4 (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
102, 9sylbi 121 . . 3 (EXMID → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
111, 10mpi 15 . 2 (EXMIDDECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})
12 0ex 4142 . . . . 5 ∅ ∈ V
1312snid 3635 . . . 4 ∅ ∈ {∅}
14 biidd 172 . . . . 5 (𝑧 = ∅ → (𝜑𝜑))
1514elrab 2905 . . . 4 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑))
1613, 15mpbiran 941 . . 3 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
1716dcbii 841 . 2 (DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ DECID 𝜑)
1811, 17sylib 122 1 (EXMIDDECID 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 835  wal 1361   = wceq 1363  wcel 2158  {crab 2469  wss 3141  c0 3434  {csn 3604  EXMIDwem 4206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rab 2474  df-v 2751  df-dif 3143  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-exmid 4207
This theorem is referenced by:  exmidn0m  4213  exmid0el  4216  exmidel  4217  exmidundif  4218  exmidundifim  4219  sbthlemi3  6972  sbthlemi5  6974  sbthlemi6  6975  exmidomniim  7153  exmidfodomrlemim  7214  exmidontriimlem1  7234  exmidapne  7273
  Copyright terms: Public domain W3C validator