| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidexmid | GIF version | ||
| Description: EXMID implies that an
arbitrary proposition is decidable. That is,
EXMID captures the usual meaning of excluded middle when stated in terms
of propositions.
To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 845, peircedc 916, or condc 855. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidexmid | ⊢ (EXMID → DECID 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3279 | . . 3 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
| 2 | df-exmid 4243 | . . . 4 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
| 3 | p0ex 4236 | . . . . . 6 ⊢ {∅} ∈ V | |
| 4 | 3 | rabex 4192 | . . . . 5 ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
| 5 | sseq1 3217 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) | |
| 6 | eleq2 2270 | . . . . . . 7 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ 𝑥 ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) | |
| 7 | 6 | dcbid 840 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (DECID ∅ ∈ 𝑥 ↔ DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 8 | 5, 7 | imbi12d 234 | . . . . 5 ⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))) |
| 9 | 4, 8 | spcv 2868 | . . . 4 ⊢ (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 10 | 2, 9 | sylbi 121 | . . 3 ⊢ (EXMID → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 11 | 1, 10 | mpi 15 | . 2 ⊢ (EXMID → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) |
| 12 | 0ex 4175 | . . . . 5 ⊢ ∅ ∈ V | |
| 13 | 12 | snid 3665 | . . . 4 ⊢ ∅ ∈ {∅} |
| 14 | biidd 172 | . . . . 5 ⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) | |
| 15 | 14 | elrab 2930 | . . . 4 ⊢ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑)) |
| 16 | 13, 15 | mpbiran 943 | . . 3 ⊢ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
| 17 | 16 | dcbii 842 | . 2 ⊢ (DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ DECID 𝜑) |
| 18 | 11, 17 | sylib 122 | 1 ⊢ (EXMID → DECID 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 836 ∀wal 1371 = wceq 1373 ∈ wcel 2177 {crab 2489 ⊆ wss 3167 ∅c0 3461 {csn 3634 EXMIDwem 4242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-dif 3169 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-exmid 4243 |
| This theorem is referenced by: exmidn0m 4249 exmid0el 4252 exmidel 4253 exmidundif 4254 exmidundifim 4255 exmidpw2en 7016 sbthlemi3 7068 sbthlemi5 7070 sbthlemi6 7071 exmidomniim 7250 exmidfodomrlemim 7316 exmidontriimlem1 7340 exmidapne 7379 |
| Copyright terms: Public domain | W3C validator |