ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidexmid GIF version

Theorem exmidexmid 4244
Description: EXMID implies that an arbitrary proposition is decidable. That is, EXMID captures the usual meaning of excluded middle when stated in terms of propositions.

To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 845, peircedc 916, or condc 855.

(Contributed by Jim Kingdon, 18-Jun-2022.)

Assertion
Ref Expression
exmidexmid (EXMIDDECID 𝜑)

Proof of Theorem exmidexmid
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3279 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}
2 df-exmid 4243 . . . 4 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
3 p0ex 4236 . . . . . 6 {∅} ∈ V
43rabex 4192 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ V
5 sseq1 3217 . . . . . 6 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ⊆ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}))
6 eleq2 2270 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ 𝑥 ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
76dcbid 840 . . . . . 6 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (DECID ∅ ∈ 𝑥DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
85, 7imbi12d 234 . . . . 5 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
94, 8spcv 2868 . . . 4 (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
102, 9sylbi 121 . . 3 (EXMID → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
111, 10mpi 15 . 2 (EXMIDDECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})
12 0ex 4175 . . . . 5 ∅ ∈ V
1312snid 3665 . . . 4 ∅ ∈ {∅}
14 biidd 172 . . . . 5 (𝑧 = ∅ → (𝜑𝜑))
1514elrab 2930 . . . 4 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑))
1613, 15mpbiran 943 . . 3 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
1716dcbii 842 . 2 (DECID ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ DECID 𝜑)
1811, 17sylib 122 1 (EXMIDDECID 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 836  wal 1371   = wceq 1373  wcel 2177  {crab 2489  wss 3167  c0 3461  {csn 3634  EXMIDwem 4242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-dif 3169  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-exmid 4243
This theorem is referenced by:  exmidn0m  4249  exmid0el  4252  exmidel  4253  exmidundif  4254  exmidundifim  4255  exmidpw2en  7016  sbthlemi3  7068  sbthlemi5  7070  sbthlemi6  7071  exmidomniim  7250  exmidfodomrlemim  7316  exmidontriimlem1  7340  exmidapne  7379
  Copyright terms: Public domain W3C validator