ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfi GIF version

Theorem dcfi 7144
Description: Decidability of a family of propositions indexed by a finite set. (Contributed by Jim Kingdon, 30-Sep-2024.)
Assertion
Ref Expression
dcfi ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dcfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2728 . . 3 (𝑤 = ∅ → (∀𝑥𝑤 𝜑 ↔ ∀𝑥 ∈ ∅ 𝜑))
21dcbid 843 . 2 (𝑤 = ∅ → (DECID𝑥𝑤 𝜑DECID𝑥 ∈ ∅ 𝜑))
3 raleq 2728 . . 3 (𝑤 = 𝑦 → (∀𝑥𝑤 𝜑 ↔ ∀𝑥𝑦 𝜑))
43dcbid 843 . 2 (𝑤 = 𝑦 → (DECID𝑥𝑤 𝜑DECID𝑥𝑦 𝜑))
5 raleq 2728 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥𝑤 𝜑 ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
65dcbid 843 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (DECID𝑥𝑤 𝜑DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
7 raleq 2728 . . 3 (𝑤 = 𝐴 → (∀𝑥𝑤 𝜑 ↔ ∀𝑥𝐴 𝜑))
87dcbid 843 . 2 (𝑤 = 𝐴 → (DECID𝑥𝑤 𝜑DECID𝑥𝐴 𝜑))
9 ral0 3593 . . . . 5 𝑥 ∈ ∅ 𝜑
109orci 736 . . . 4 (∀𝑥 ∈ ∅ 𝜑 ∨ ¬ ∀𝑥 ∈ ∅ 𝜑)
11 df-dc 840 . . . 4 (DECID𝑥 ∈ ∅ 𝜑 ↔ (∀𝑥 ∈ ∅ 𝜑 ∨ ¬ ∀𝑥 ∈ ∅ 𝜑))
1210, 11mpbir 146 . . 3 DECID𝑥 ∈ ∅ 𝜑
1312a1i 9 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥 ∈ ∅ 𝜑)
14 simpr 110 . . . . 5 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID𝑥𝑦 𝜑)
15 simplrr 536 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → 𝑧 ∈ (𝐴𝑦))
1615eldifad 3208 . . . . . . 7 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → 𝑧𝐴)
17 simp-4r 542 . . . . . . 7 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → ∀𝑥𝐴 DECID 𝜑)
18 nfsbc1v 3047 . . . . . . . . 9 𝑥[𝑧 / 𝑥]𝜑
1918nfdc 1705 . . . . . . . 8 𝑥DECID [𝑧 / 𝑥]𝜑
20 sbceq1a 3038 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
2120dcbid 843 . . . . . . . 8 (𝑥 = 𝑧 → (DECID 𝜑DECID [𝑧 / 𝑥]𝜑))
2219, 21rspc 2901 . . . . . . 7 (𝑧𝐴 → (∀𝑥𝐴 DECID 𝜑DECID [𝑧 / 𝑥]𝜑))
2316, 17, 22sylc 62 . . . . . 6 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID [𝑧 / 𝑥]𝜑)
24 ralsns 3704 . . . . . . . 8 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑))
2524elv 2803 . . . . . . 7 (∀𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑)
2625dcbii 845 . . . . . 6 (DECID𝑥 ∈ {𝑧}𝜑DECID [𝑧 / 𝑥]𝜑)
2723, 26sylibr 134 . . . . 5 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID𝑥 ∈ {𝑧}𝜑)
2814, 27dcand 938 . . . 4 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID (∀𝑥𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑))
29 ralunb 3385 . . . . 5 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∀𝑥𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑))
3029dcbii 845 . . . 4 (DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑DECID (∀𝑥𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑))
3128, 30sylibr 134 . . 3 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
3231ex 115 . 2 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (DECID𝑥𝑦 𝜑DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
33 simpl 109 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → 𝐴 ∈ Fin)
342, 4, 6, 8, 13, 32, 33findcard2sd 7050 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  [wsbc 3028  cdif 3194  cun 3195  wss 3197  c0 3491  {csn 3666  Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by:  prmdc  12647  psr1clfi  14646
  Copyright terms: Public domain W3C validator