ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfi GIF version

Theorem dcfi 6940
Description: Decidability of a family of propositions indexed by a finite set. (Contributed by Jim Kingdon, 30-Sep-2024.)
Assertion
Ref Expression
dcfi ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dcfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2659 . . 3 (𝑤 = ∅ → (∀𝑥𝑤 𝜑 ↔ ∀𝑥 ∈ ∅ 𝜑))
21dcbid 828 . 2 (𝑤 = ∅ → (DECID𝑥𝑤 𝜑DECID𝑥 ∈ ∅ 𝜑))
3 raleq 2659 . . 3 (𝑤 = 𝑦 → (∀𝑥𝑤 𝜑 ↔ ∀𝑥𝑦 𝜑))
43dcbid 828 . 2 (𝑤 = 𝑦 → (DECID𝑥𝑤 𝜑DECID𝑥𝑦 𝜑))
5 raleq 2659 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥𝑤 𝜑 ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
65dcbid 828 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (DECID𝑥𝑤 𝜑DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
7 raleq 2659 . . 3 (𝑤 = 𝐴 → (∀𝑥𝑤 𝜑 ↔ ∀𝑥𝐴 𝜑))
87dcbid 828 . 2 (𝑤 = 𝐴 → (DECID𝑥𝑤 𝜑DECID𝑥𝐴 𝜑))
9 ral0 3508 . . . . 5 𝑥 ∈ ∅ 𝜑
109orci 721 . . . 4 (∀𝑥 ∈ ∅ 𝜑 ∨ ¬ ∀𝑥 ∈ ∅ 𝜑)
11 df-dc 825 . . . 4 (DECID𝑥 ∈ ∅ 𝜑 ↔ (∀𝑥 ∈ ∅ 𝜑 ∨ ¬ ∀𝑥 ∈ ∅ 𝜑))
1210, 11mpbir 145 . . 3 DECID𝑥 ∈ ∅ 𝜑
1312a1i 9 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥 ∈ ∅ 𝜑)
14 simpr 109 . . . . 5 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID𝑥𝑦 𝜑)
15 simplrr 526 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → 𝑧 ∈ (𝐴𝑦))
1615eldifad 3125 . . . . . . 7 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → 𝑧𝐴)
17 simp-4r 532 . . . . . . 7 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → ∀𝑥𝐴 DECID 𝜑)
18 nfsbc1v 2967 . . . . . . . . 9 𝑥[𝑧 / 𝑥]𝜑
1918nfdc 1646 . . . . . . . 8 𝑥DECID [𝑧 / 𝑥]𝜑
20 sbceq1a 2958 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
2120dcbid 828 . . . . . . . 8 (𝑥 = 𝑧 → (DECID 𝜑DECID [𝑧 / 𝑥]𝜑))
2219, 21rspc 2822 . . . . . . 7 (𝑧𝐴 → (∀𝑥𝐴 DECID 𝜑DECID [𝑧 / 𝑥]𝜑))
2316, 17, 22sylc 62 . . . . . 6 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID [𝑧 / 𝑥]𝜑)
24 ralsnsg 3610 . . . . . . . 8 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑))
2524elv 2728 . . . . . . 7 (∀𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑)
2625dcbii 830 . . . . . 6 (DECID𝑥 ∈ {𝑧}𝜑DECID [𝑧 / 𝑥]𝜑)
2723, 26sylibr 133 . . . . 5 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID𝑥 ∈ {𝑧}𝜑)
28 dcan 923 . . . . 5 (DECID𝑥𝑦 𝜑 → (DECID𝑥 ∈ {𝑧}𝜑DECID (∀𝑥𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑)))
2914, 27, 28sylc 62 . . . 4 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID (∀𝑥𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑))
30 ralunb 3301 . . . . 5 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∀𝑥𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑))
3130dcbii 830 . . . 4 (DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑DECID (∀𝑥𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑))
3229, 31sylibr 133 . . 3 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
3332ex 114 . 2 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (DECID𝑥𝑦 𝜑DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
34 simpl 108 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → 𝐴 ∈ Fin)
352, 4, 6, 8, 13, 33, 34findcard2sd 6852 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1342  wcel 2135  wral 2442  Vcvv 2724  [wsbc 2949  cdif 3111  cun 3112  wss 3114  c0 3407  {csn 3573  Fincfn 6700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-iinf 4562
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-if 3519  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-tr 4078  df-id 4268  df-iord 4341  df-on 4343  df-suc 4346  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-er 6495  df-en 6701  df-fin 6703
This theorem is referenced by:  prmdc  12056
  Copyright terms: Public domain W3C validator