| Step | Hyp | Ref
| Expression |
| 1 | | raleq 2693 |
. . 3
⊢ (𝑤 = ∅ → (∀𝑥 ∈ 𝑤 𝜑 ↔ ∀𝑥 ∈ ∅ 𝜑)) |
| 2 | 1 | dcbid 839 |
. 2
⊢ (𝑤 = ∅ →
(DECID ∀𝑥 ∈ 𝑤 𝜑 ↔ DECID ∀𝑥 ∈ ∅ 𝜑)) |
| 3 | | raleq 2693 |
. . 3
⊢ (𝑤 = 𝑦 → (∀𝑥 ∈ 𝑤 𝜑 ↔ ∀𝑥 ∈ 𝑦 𝜑)) |
| 4 | 3 | dcbid 839 |
. 2
⊢ (𝑤 = 𝑦 → (DECID ∀𝑥 ∈ 𝑤 𝜑 ↔ DECID ∀𝑥 ∈ 𝑦 𝜑)) |
| 5 | | raleq 2693 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ 𝑤 𝜑 ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)) |
| 6 | 5 | dcbid 839 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (DECID ∀𝑥 ∈ 𝑤 𝜑 ↔ DECID ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)) |
| 7 | | raleq 2693 |
. . 3
⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ 𝑤 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| 8 | 7 | dcbid 839 |
. 2
⊢ (𝑤 = 𝐴 → (DECID ∀𝑥 ∈ 𝑤 𝜑 ↔ DECID ∀𝑥 ∈ 𝐴 𝜑)) |
| 9 | | ral0 3553 |
. . . . 5
⊢
∀𝑥 ∈
∅ 𝜑 |
| 10 | 9 | orci 732 |
. . . 4
⊢
(∀𝑥 ∈
∅ 𝜑 ∨ ¬
∀𝑥 ∈ ∅
𝜑) |
| 11 | | df-dc 836 |
. . . 4
⊢
(DECID ∀𝑥 ∈ ∅ 𝜑 ↔ (∀𝑥 ∈ ∅ 𝜑 ∨ ¬ ∀𝑥 ∈ ∅ 𝜑)) |
| 12 | 10, 11 | mpbir 146 |
. . 3
⊢
DECID ∀𝑥 ∈ ∅ 𝜑 |
| 13 | 12 | a1i 9 |
. 2
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → DECID ∀𝑥 ∈ ∅ 𝜑) |
| 14 | | simpr 110 |
. . . . 5
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → DECID ∀𝑥 ∈ 𝑦 𝜑) |
| 15 | | simplrr 536 |
. . . . . . . 8
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
| 16 | 15 | eldifad 3168 |
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → 𝑧 ∈ 𝐴) |
| 17 | | simp-4r 542 |
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → ∀𝑥 ∈ 𝐴 DECID 𝜑) |
| 18 | | nfsbc1v 3008 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 19 | 18 | nfdc 1673 |
. . . . . . . 8
⊢
Ⅎ𝑥DECID [𝑧 / 𝑥]𝜑 |
| 20 | | sbceq1a 2999 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 21 | 20 | dcbid 839 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (DECID 𝜑 ↔ DECID [𝑧 / 𝑥]𝜑)) |
| 22 | 19, 21 | rspc 2862 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 DECID 𝜑 → DECID [𝑧 / 𝑥]𝜑)) |
| 23 | 16, 17, 22 | sylc 62 |
. . . . . 6
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → DECID [𝑧 / 𝑥]𝜑) |
| 24 | | ralsns 3661 |
. . . . . . . 8
⊢ (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 25 | 24 | elv 2767 |
. . . . . . 7
⊢
(∀𝑥 ∈
{𝑧}𝜑 ↔ [𝑧 / 𝑥]𝜑) |
| 26 | 25 | dcbii 841 |
. . . . . 6
⊢
(DECID ∀𝑥 ∈ {𝑧}𝜑 ↔ DECID [𝑧 / 𝑥]𝜑) |
| 27 | 23, 26 | sylibr 134 |
. . . . 5
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → DECID ∀𝑥 ∈ {𝑧}𝜑) |
| 28 | 14, 27 | dcand 934 |
. . . 4
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → DECID (∀𝑥 ∈ 𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑)) |
| 29 | | ralunb 3345 |
. . . . 5
⊢
(∀𝑥 ∈
(𝑦 ∪ {𝑧})𝜑 ↔ (∀𝑥 ∈ 𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑)) |
| 30 | 29 | dcbii 841 |
. . . 4
⊢
(DECID ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ DECID (∀𝑥 ∈ 𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑)) |
| 31 | 28, 30 | sylibr 134 |
. . 3
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → DECID ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑) |
| 32 | 31 | ex 115 |
. 2
⊢ ((((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (DECID
∀𝑥 ∈ 𝑦 𝜑 → DECID ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)) |
| 33 | | simpl 109 |
. 2
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → 𝐴 ∈ Fin) |
| 34 | 2, 4, 6, 8, 13, 32, 33 | findcard2sd 6962 |
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → DECID ∀𝑥 ∈ 𝐴 𝜑) |