| Step | Hyp | Ref
 | Expression | 
| 1 |   | raleq 2693 | 
. . 3
⊢ (𝑤 = ∅ → (∀𝑥 ∈ 𝑤 𝜑 ↔ ∀𝑥 ∈ ∅ 𝜑)) | 
| 2 | 1 | dcbid 839 | 
. 2
⊢ (𝑤 = ∅ →
(DECID ∀𝑥 ∈ 𝑤 𝜑 ↔ DECID ∀𝑥 ∈ ∅ 𝜑)) | 
| 3 |   | raleq 2693 | 
. . 3
⊢ (𝑤 = 𝑦 → (∀𝑥 ∈ 𝑤 𝜑 ↔ ∀𝑥 ∈ 𝑦 𝜑)) | 
| 4 | 3 | dcbid 839 | 
. 2
⊢ (𝑤 = 𝑦 → (DECID ∀𝑥 ∈ 𝑤 𝜑 ↔ DECID ∀𝑥 ∈ 𝑦 𝜑)) | 
| 5 |   | raleq 2693 | 
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ 𝑤 𝜑 ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)) | 
| 6 | 5 | dcbid 839 | 
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (DECID ∀𝑥 ∈ 𝑤 𝜑 ↔ DECID ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)) | 
| 7 |   | raleq 2693 | 
. . 3
⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ 𝑤 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | 
| 8 | 7 | dcbid 839 | 
. 2
⊢ (𝑤 = 𝐴 → (DECID ∀𝑥 ∈ 𝑤 𝜑 ↔ DECID ∀𝑥 ∈ 𝐴 𝜑)) | 
| 9 |   | ral0 3552 | 
. . . . 5
⊢
∀𝑥 ∈
∅ 𝜑 | 
| 10 | 9 | orci 732 | 
. . . 4
⊢
(∀𝑥 ∈
∅ 𝜑 ∨ ¬
∀𝑥 ∈ ∅
𝜑) | 
| 11 |   | df-dc 836 | 
. . . 4
⊢
(DECID ∀𝑥 ∈ ∅ 𝜑 ↔ (∀𝑥 ∈ ∅ 𝜑 ∨ ¬ ∀𝑥 ∈ ∅ 𝜑)) | 
| 12 | 10, 11 | mpbir 146 | 
. . 3
⊢
DECID ∀𝑥 ∈ ∅ 𝜑 | 
| 13 | 12 | a1i 9 | 
. 2
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → DECID ∀𝑥 ∈ ∅ 𝜑) | 
| 14 |   | simpr 110 | 
. . . . 5
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → DECID ∀𝑥 ∈ 𝑦 𝜑) | 
| 15 |   | simplrr 536 | 
. . . . . . . 8
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → 𝑧 ∈ (𝐴 ∖ 𝑦)) | 
| 16 | 15 | eldifad 3168 | 
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → 𝑧 ∈ 𝐴) | 
| 17 |   | simp-4r 542 | 
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → ∀𝑥 ∈ 𝐴 DECID 𝜑) | 
| 18 |   | nfsbc1v 3008 | 
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 | 
| 19 | 18 | nfdc 1673 | 
. . . . . . . 8
⊢
Ⅎ𝑥DECID [𝑧 / 𝑥]𝜑 | 
| 20 |   | sbceq1a 2999 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | 
| 21 | 20 | dcbid 839 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (DECID 𝜑 ↔ DECID [𝑧 / 𝑥]𝜑)) | 
| 22 | 19, 21 | rspc 2862 | 
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 DECID 𝜑 → DECID [𝑧 / 𝑥]𝜑)) | 
| 23 | 16, 17, 22 | sylc 62 | 
. . . . . 6
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → DECID [𝑧 / 𝑥]𝜑) | 
| 24 |   | ralsns 3660 | 
. . . . . . . 8
⊢ (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜑 ↔ [𝑧 / 𝑥]𝜑)) | 
| 25 | 24 | elv 2767 | 
. . . . . . 7
⊢
(∀𝑥 ∈
{𝑧}𝜑 ↔ [𝑧 / 𝑥]𝜑) | 
| 26 | 25 | dcbii 841 | 
. . . . . 6
⊢
(DECID ∀𝑥 ∈ {𝑧}𝜑 ↔ DECID [𝑧 / 𝑥]𝜑) | 
| 27 | 23, 26 | sylibr 134 | 
. . . . 5
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → DECID ∀𝑥 ∈ {𝑧}𝜑) | 
| 28 | 14, 27 | dcand 934 | 
. . . 4
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → DECID (∀𝑥 ∈ 𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑)) | 
| 29 |   | ralunb 3344 | 
. . . . 5
⊢
(∀𝑥 ∈
(𝑦 ∪ {𝑧})𝜑 ↔ (∀𝑥 ∈ 𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑)) | 
| 30 | 29 | dcbii 841 | 
. . . 4
⊢
(DECID ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ DECID (∀𝑥 ∈ 𝑦 𝜑 ∧ ∀𝑥 ∈ {𝑧}𝜑)) | 
| 31 | 28, 30 | sylibr 134 | 
. . 3
⊢
(((((𝐴 ∈ Fin
∧ ∀𝑥 ∈
𝐴 DECID
𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ DECID ∀𝑥 ∈ 𝑦 𝜑) → DECID ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑) | 
| 32 | 31 | ex 115 | 
. 2
⊢ ((((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (DECID
∀𝑥 ∈ 𝑦 𝜑 → DECID ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)) | 
| 33 |   | simpl 109 | 
. 2
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → 𝐴 ∈ Fin) | 
| 34 | 2, 4, 6, 8, 13, 32, 33 | findcard2sd 6953 | 
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → DECID ∀𝑥 ∈ 𝐴 𝜑) |