![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pclemdc | GIF version |
Description: Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
Ref | Expression |
---|---|
pclemdc | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0dc 9641 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → DECID 𝑥 ∈ ℕ0) | |
2 | 1 | ad2antlr 489 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ ℕ0) |
3 | eluzelz 9567 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℤ) | |
4 | 3 | ad3antrrr 492 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑃 ∈ ℤ) |
5 | zexpcl 10566 | . . . . . . 7 ⊢ ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℕ0) → (𝑃↑𝑥) ∈ ℤ) | |
6 | 4, 5 | sylancom 420 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → (𝑃↑𝑥) ∈ ℤ) |
7 | simprl 529 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ) | |
8 | 7 | ad2antrr 488 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ) |
9 | zdvdsdc 11851 | . . . . . 6 ⊢ (((𝑃↑𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑃↑𝑥) ∥ 𝑁) | |
10 | 6, 8, 9 | syl2anc 411 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID (𝑃↑𝑥) ∥ 𝑁) |
11 | 2, 10 | dcand 934 | . . . 4 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
12 | oveq2 5904 | . . . . . . 7 ⊢ (𝑛 = 𝑥 → (𝑃↑𝑛) = (𝑃↑𝑥)) | |
13 | 12 | breq1d 4028 | . . . . . 6 ⊢ (𝑛 = 𝑥 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑥) ∥ 𝑁)) |
14 | pclem.1 | . . . . . 6 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
15 | 13, 14 | elrab2 2911 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
16 | 15 | dcbii 841 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
17 | 11, 16 | sylibr 134 | . . 3 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ 𝐴) |
18 | simpr 110 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ¬ 𝑥 ∈ ℕ0) | |
19 | 18 | intnanrd 933 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
20 | 19 | olcd 735 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ∨ ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) |
21 | df-dc 836 | . . . . 5 ⊢ (DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ↔ ((𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ∨ ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) | |
22 | 20, 21 | sylibr 134 | . . . 4 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
23 | 22, 16 | sylibr 134 | . . 3 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ 𝐴) |
24 | exmiddc 837 | . . . . 5 ⊢ (DECID 𝑥 ∈ ℕ0 → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) | |
25 | 1, 24 | syl 14 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) |
26 | 25 | adantl 277 | . . 3 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) |
27 | 17, 23, 26 | mpjaodan 799 | . 2 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → DECID 𝑥 ∈ 𝐴) |
28 | 27 | ralrimiva 2563 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 ∀wral 2468 {crab 2472 class class class wbr 4018 ‘cfv 5235 (class class class)co 5896 0cc0 7841 2c2 9000 ℕ0cn0 9206 ℤcz 9283 ℤ≥cuz 9558 ↑cexp 10550 ∥ cdvds 11826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 ax-pre-mulext 7959 ax-arch 7960 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-recs 6330 df-frec 6416 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-reap 8562 df-ap 8569 df-div 8660 df-inn 8950 df-n0 9207 df-z 9284 df-uz 9559 df-q 9650 df-rp 9684 df-fl 10301 df-mod 10354 df-seqfrec 10477 df-exp 10551 df-dvds 11827 |
This theorem is referenced by: pcprecl 12321 pcprendvds 12322 pcpremul 12325 |
Copyright terms: Public domain | W3C validator |