Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pclemdc | GIF version |
Description: Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
Ref | Expression |
---|---|
pclemdc | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0dc 9545 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → DECID 𝑥 ∈ ℕ0) | |
2 | 1 | ad2antlr 481 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ ℕ0) |
3 | eluzelz 9471 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℤ) | |
4 | 3 | ad3antrrr 484 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑃 ∈ ℤ) |
5 | simpr 109 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
6 | zexpcl 10466 | . . . . . . 7 ⊢ ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℕ0) → (𝑃↑𝑥) ∈ ℤ) | |
7 | 4, 5, 6 | syl2anc 409 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → (𝑃↑𝑥) ∈ ℤ) |
8 | simprl 521 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ) | |
9 | 8 | ad2antrr 480 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ) |
10 | zdvdsdc 11748 | . . . . . 6 ⊢ (((𝑃↑𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑃↑𝑥) ∥ 𝑁) | |
11 | 7, 9, 10 | syl2anc 409 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID (𝑃↑𝑥) ∥ 𝑁) |
12 | dcan2 924 | . . . . 5 ⊢ (DECID 𝑥 ∈ ℕ0 → (DECID (𝑃↑𝑥) ∥ 𝑁 → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) | |
13 | 2, 11, 12 | sylc 62 | . . . 4 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
14 | oveq2 5849 | . . . . . . 7 ⊢ (𝑛 = 𝑥 → (𝑃↑𝑛) = (𝑃↑𝑥)) | |
15 | 14 | breq1d 3991 | . . . . . 6 ⊢ (𝑛 = 𝑥 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑥) ∥ 𝑁)) |
16 | pclem.1 | . . . . . 6 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
17 | 15, 16 | elrab2 2884 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
18 | 17 | dcbii 830 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
19 | 13, 18 | sylibr 133 | . . 3 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ 𝐴) |
20 | simpr 109 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ¬ 𝑥 ∈ ℕ0) | |
21 | 20 | intnanrd 922 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
22 | 21 | olcd 724 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ∨ ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) |
23 | df-dc 825 | . . . . 5 ⊢ (DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ↔ ((𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ∨ ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) | |
24 | 22, 23 | sylibr 133 | . . . 4 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
25 | 24, 18 | sylibr 133 | . . 3 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ 𝐴) |
26 | exmiddc 826 | . . . . 5 ⊢ (DECID 𝑥 ∈ ℕ0 → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) | |
27 | 1, 26 | syl 14 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) |
28 | 27 | adantl 275 | . . 3 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) |
29 | 19, 25, 28 | mpjaodan 788 | . 2 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → DECID 𝑥 ∈ 𝐴) |
30 | 29 | ralrimiva 2538 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ≠ wne 2335 ∀wral 2443 {crab 2447 class class class wbr 3981 ‘cfv 5187 (class class class)co 5841 0cc0 7749 2c2 8904 ℕ0cn0 9110 ℤcz 9187 ℤ≥cuz 9462 ↑cexp 10450 ∥ cdvds 11723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-q 9554 df-rp 9586 df-fl 10201 df-mod 10254 df-seqfrec 10377 df-exp 10451 df-dvds 11724 |
This theorem is referenced by: pcprecl 12217 pcprendvds 12218 pcpremul 12221 |
Copyright terms: Public domain | W3C validator |