| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pclemdc | GIF version | ||
| Description: Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.) |
| Ref | Expression |
|---|---|
| pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
| Ref | Expression |
|---|---|
| pclemdc | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0dc 9814 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → DECID 𝑥 ∈ ℕ0) | |
| 2 | 1 | ad2antlr 489 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ ℕ0) |
| 3 | eluzelz 9739 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℤ) | |
| 4 | 3 | ad3antrrr 492 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑃 ∈ ℤ) |
| 5 | zexpcl 10784 | . . . . . . 7 ⊢ ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℕ0) → (𝑃↑𝑥) ∈ ℤ) | |
| 6 | 4, 5 | sylancom 420 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → (𝑃↑𝑥) ∈ ℤ) |
| 7 | simprl 529 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ) | |
| 8 | 7 | ad2antrr 488 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ) |
| 9 | zdvdsdc 12331 | . . . . . 6 ⊢ (((𝑃↑𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑃↑𝑥) ∥ 𝑁) | |
| 10 | 6, 8, 9 | syl2anc 411 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID (𝑃↑𝑥) ∥ 𝑁) |
| 11 | 2, 10 | dcand 938 | . . . 4 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
| 12 | oveq2 6015 | . . . . . . 7 ⊢ (𝑛 = 𝑥 → (𝑃↑𝑛) = (𝑃↑𝑥)) | |
| 13 | 12 | breq1d 4093 | . . . . . 6 ⊢ (𝑛 = 𝑥 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑥) ∥ 𝑁)) |
| 14 | pclem.1 | . . . . . 6 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
| 15 | 13, 14 | elrab2 2962 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
| 16 | 15 | dcbii 845 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
| 17 | 11, 16 | sylibr 134 | . . 3 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ 𝐴) |
| 18 | simpr 110 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ¬ 𝑥 ∈ ℕ0) | |
| 19 | 18 | intnanrd 937 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
| 20 | 19 | olcd 739 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ∨ ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) |
| 21 | df-dc 840 | . . . . 5 ⊢ (DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ↔ ((𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ∨ ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) | |
| 22 | 20, 21 | sylibr 134 | . . . 4 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
| 23 | 22, 16 | sylibr 134 | . . 3 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ 𝐴) |
| 24 | exmiddc 841 | . . . . 5 ⊢ (DECID 𝑥 ∈ ℕ0 → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) | |
| 25 | 1, 24 | syl 14 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) |
| 26 | 25 | adantl 277 | . . 3 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) |
| 27 | 17, 23, 26 | mpjaodan 803 | . 2 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → DECID 𝑥 ∈ 𝐴) |
| 28 | 27 | ralrimiva 2603 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 {crab 2512 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 0cc0 8007 2c2 9169 ℕ0cn0 9377 ℤcz 9454 ℤ≥cuz 9730 ↑cexp 10768 ∥ cdvds 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-dvds 12307 |
| This theorem is referenced by: pcprecl 12820 pcprendvds 12821 pcpremul 12824 |
| Copyright terms: Public domain | W3C validator |