![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pclemdc | GIF version |
Description: Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
Ref | Expression |
---|---|
pclemdc | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0dc 9676 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → DECID 𝑥 ∈ ℕ0) | |
2 | 1 | ad2antlr 489 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ ℕ0) |
3 | eluzelz 9601 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℤ) | |
4 | 3 | ad3antrrr 492 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑃 ∈ ℤ) |
5 | zexpcl 10625 | . . . . . . 7 ⊢ ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℕ0) → (𝑃↑𝑥) ∈ ℤ) | |
6 | 4, 5 | sylancom 420 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → (𝑃↑𝑥) ∈ ℤ) |
7 | simprl 529 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ) | |
8 | 7 | ad2antrr 488 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ) |
9 | zdvdsdc 11955 | . . . . . 6 ⊢ (((𝑃↑𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑃↑𝑥) ∥ 𝑁) | |
10 | 6, 8, 9 | syl2anc 411 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID (𝑃↑𝑥) ∥ 𝑁) |
11 | 2, 10 | dcand 934 | . . . 4 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
12 | oveq2 5926 | . . . . . . 7 ⊢ (𝑛 = 𝑥 → (𝑃↑𝑛) = (𝑃↑𝑥)) | |
13 | 12 | breq1d 4039 | . . . . . 6 ⊢ (𝑛 = 𝑥 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑥) ∥ 𝑁)) |
14 | pclem.1 | . . . . . 6 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
15 | 13, 14 | elrab2 2919 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
16 | 15 | dcbii 841 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
17 | 11, 16 | sylibr 134 | . . 3 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ 𝐴) |
18 | simpr 110 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ¬ 𝑥 ∈ ℕ0) | |
19 | 18 | intnanrd 933 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
20 | 19 | olcd 735 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ∨ ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) |
21 | df-dc 836 | . . . . 5 ⊢ (DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ↔ ((𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ∨ ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) | |
22 | 20, 21 | sylibr 134 | . . . 4 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
23 | 22, 16 | sylibr 134 | . . 3 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ 𝐴) |
24 | exmiddc 837 | . . . . 5 ⊢ (DECID 𝑥 ∈ ℕ0 → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) | |
25 | 1, 24 | syl 14 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) |
26 | 25 | adantl 277 | . . 3 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) |
27 | 17, 23, 26 | mpjaodan 799 | . 2 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → DECID 𝑥 ∈ 𝐴) |
28 | 27 | ralrimiva 2567 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 {crab 2476 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 0cc0 7872 2c2 9033 ℕ0cn0 9240 ℤcz 9317 ℤ≥cuz 9592 ↑cexp 10609 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-dvds 11931 |
This theorem is referenced by: pcprecl 12427 pcprendvds 12428 pcpremul 12431 |
Copyright terms: Public domain | W3C validator |