| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pclemdc | GIF version | ||
| Description: Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.) |
| Ref | Expression |
|---|---|
| pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
| Ref | Expression |
|---|---|
| pclemdc | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0dc 9774 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → DECID 𝑥 ∈ ℕ0) | |
| 2 | 1 | ad2antlr 489 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ ℕ0) |
| 3 | eluzelz 9699 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℤ) | |
| 4 | 3 | ad3antrrr 492 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑃 ∈ ℤ) |
| 5 | zexpcl 10743 | . . . . . . 7 ⊢ ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℕ0) → (𝑃↑𝑥) ∈ ℤ) | |
| 6 | 4, 5 | sylancom 420 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → (𝑃↑𝑥) ∈ ℤ) |
| 7 | simprl 529 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ) | |
| 8 | 7 | ad2antrr 488 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ) |
| 9 | zdvdsdc 12289 | . . . . . 6 ⊢ (((𝑃↑𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑃↑𝑥) ∥ 𝑁) | |
| 10 | 6, 8, 9 | syl2anc 411 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID (𝑃↑𝑥) ∥ 𝑁) |
| 11 | 2, 10 | dcand 937 | . . . 4 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
| 12 | oveq2 5982 | . . . . . . 7 ⊢ (𝑛 = 𝑥 → (𝑃↑𝑛) = (𝑃↑𝑥)) | |
| 13 | 12 | breq1d 4072 | . . . . . 6 ⊢ (𝑛 = 𝑥 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑥) ∥ 𝑁)) |
| 14 | pclem.1 | . . . . . 6 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
| 15 | 13, 14 | elrab2 2942 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
| 16 | 15 | dcbii 844 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
| 17 | 11, 16 | sylibr 134 | . . 3 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ 𝐴) |
| 18 | simpr 110 | . . . . . . 7 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ¬ 𝑥 ∈ ℕ0) | |
| 19 | 18 | intnanrd 936 | . . . . . 6 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
| 20 | 19 | olcd 738 | . . . . 5 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ∨ ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) |
| 21 | df-dc 839 | . . . . 5 ⊢ (DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ↔ ((𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁) ∨ ¬ (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁))) | |
| 22 | 20, 21 | sylibr 134 | . . . 4 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → DECID (𝑥 ∈ ℕ0 ∧ (𝑃↑𝑥) ∥ 𝑁)) |
| 23 | 22, 16 | sylibr 134 | . . 3 ⊢ ((((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ ¬ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ 𝐴) |
| 24 | exmiddc 840 | . . . . 5 ⊢ (DECID 𝑥 ∈ ℕ0 → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) | |
| 25 | 1, 24 | syl 14 | . . . 4 ⊢ (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) |
| 26 | 25 | adantl 277 | . . 3 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℕ0 ∨ ¬ 𝑥 ∈ ℕ0)) |
| 27 | 17, 23, 26 | mpjaodan 802 | . 2 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → DECID 𝑥 ∈ 𝐴) |
| 28 | 27 | ralrimiva 2583 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 712 DECID wdc 838 = wceq 1375 ∈ wcel 2180 ≠ wne 2380 ∀wral 2488 {crab 2492 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 0cc0 7967 2c2 9129 ℕ0cn0 9337 ℤcz 9414 ℤ≥cuz 9690 ↑cexp 10727 ∥ cdvds 12264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fl 10457 df-mod 10512 df-seqfrec 10637 df-exp 10728 df-dvds 12265 |
| This theorem is referenced by: pcprecl 12778 pcprendvds 12779 pcpremul 12782 |
| Copyright terms: Public domain | W3C validator |