ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemp1 GIF version

Theorem nninfdclemp1 12405
Description: Lemma for nninfdc 12408. Each element of the sequence 𝐹 is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
nninfdclemp1.u (𝜑𝑈 ∈ ℕ)
Assertion
Ref Expression
nninfdclemp1 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑦,𝐴,𝑧   𝑥,𝐴   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑦,𝐽,𝑧   𝑈,𝑖   𝑈,𝑚,𝑛   𝑥,𝑈   𝑦,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemp1
Dummy variables 𝑎 𝑏 𝑟 𝑝 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemf.dc . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
3 nninfdclemf.nb . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
4 nninfdclemf.j . . . . . 6 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
5 nninfdclemf.f . . . . . 6 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
61, 2, 3, 4, 5nninfdclemf 12404 . . . . 5 (𝜑𝐹:ℕ⟶𝐴)
7 nninfdclemp1.u . . . . 5 (𝜑𝑈 ∈ ℕ)
86, 7ffvelrnd 5632 . . . 4 (𝜑 → (𝐹𝑈) ∈ 𝐴)
91, 8sseldd 3148 . . 3 (𝜑 → (𝐹𝑈) ∈ ℕ)
109nnred 8891 . 2 (𝜑 → (𝐹𝑈) ∈ ℝ)
119nnzd 9333 . . . 4 (𝜑 → (𝐹𝑈) ∈ ℤ)
1211peano2zd 9337 . . 3 (𝜑 → ((𝐹𝑈) + 1) ∈ ℤ)
1312zred 9334 . 2 (𝜑 → ((𝐹𝑈) + 1) ∈ ℝ)
147peano2nnd 8893 . . . . 5 (𝜑 → (𝑈 + 1) ∈ ℕ)
156, 14ffvelrnd 5632 . . . 4 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ 𝐴)
161, 15sseldd 3148 . . 3 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ ℕ)
1716nnred 8891 . 2 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ ℝ)
1810ltp1d 8846 . 2 (𝜑 → (𝐹𝑈) < ((𝐹𝑈) + 1))
19 simpr 109 . . . . . . 7 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → 𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
2019elin2d 3317 . . . . . 6 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → 𝑟 ∈ (ℤ‘((𝐹𝑈) + 1)))
21 eluzle 9499 . . . . . 6 (𝑟 ∈ (ℤ‘((𝐹𝑈) + 1)) → ((𝐹𝑈) + 1) ≤ 𝑟)
2220, 21syl 14 . . . . 5 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → ((𝐹𝑈) + 1) ≤ 𝑟)
2322ralrimiva 2543 . . . 4 (𝜑 → ∀𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))((𝐹𝑈) + 1) ≤ 𝑟)
24 inss1 3347 . . . . . . 7 (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ 𝐴
2524, 1sstrid 3158 . . . . . 6 (𝜑 → (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℕ)
26 eleq1w 2231 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
2726dcbid 833 . . . . . . . . . 10 (𝑥 = 𝑎 → (DECID 𝑥𝐴DECID 𝑎𝐴))
282adantr 274 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
29 simpr 109 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℕ)
3027, 28, 29rspcdva 2839 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎𝐴)
3129nnzd 9333 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℤ)
32 eluzdc 9569 . . . . . . . . . 10 ((((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑎 ∈ ℤ) → DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))
3312, 31, 32syl2an2r 590 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))
34 dcan2 929 . . . . . . . . 9 (DECID 𝑎𝐴 → (DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)) → DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))))
3530, 33, 34sylc 62 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ) → DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
36 elin 3310 . . . . . . . . 9 (𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
3736dcbii 835 . . . . . . . 8 (DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
3835, 37sylibr 133 . . . . . . 7 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
3938ralrimiva 2543 . . . . . 6 (𝜑 → ∀𝑎 ∈ ℕ DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
40 breq1 3992 . . . . . . . . . . 11 (𝑚 = (𝐹𝑈) → (𝑚 < 𝑛 ↔ (𝐹𝑈) < 𝑛))
4140rexbidv 2471 . . . . . . . . . 10 (𝑚 = (𝐹𝑈) → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 (𝐹𝑈) < 𝑛))
4241, 3, 9rspcdva 2839 . . . . . . . . 9 (𝜑 → ∃𝑛𝐴 (𝐹𝑈) < 𝑛)
43 breq2 3993 . . . . . . . . . 10 (𝑛 = 𝑏 → ((𝐹𝑈) < 𝑛 ↔ (𝐹𝑈) < 𝑏))
4443cbvrexv 2697 . . . . . . . . 9 (∃𝑛𝐴 (𝐹𝑈) < 𝑛 ↔ ∃𝑏𝐴 (𝐹𝑈) < 𝑏)
4542, 44sylib 121 . . . . . . . 8 (𝜑 → ∃𝑏𝐴 (𝐹𝑈) < 𝑏)
46 df-rex 2454 . . . . . . . 8 (∃𝑏𝐴 (𝐹𝑈) < 𝑏 ↔ ∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏))
4745, 46sylib 121 . . . . . . 7 (𝜑 → ∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏))
48 simprl 526 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏𝐴)
4912adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) + 1) ∈ ℤ)
501adantr 274 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝐴 ⊆ ℕ)
5150, 48sseldd 3148 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ ℕ)
5251nnzd 9333 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ ℤ)
53 simprr 527 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → (𝐹𝑈) < 𝑏)
54 nnltp1le 9272 . . . . . . . . . . . . 13 (((𝐹𝑈) ∈ ℕ ∧ 𝑏 ∈ ℕ) → ((𝐹𝑈) < 𝑏 ↔ ((𝐹𝑈) + 1) ≤ 𝑏))
559, 51, 54syl2an2r 590 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) < 𝑏 ↔ ((𝐹𝑈) + 1) ≤ 𝑏))
5653, 55mpbid 146 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) + 1) ≤ 𝑏)
57 eluz2 9493 . . . . . . . . . . 11 (𝑏 ∈ (ℤ‘((𝐹𝑈) + 1)) ↔ (((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ ((𝐹𝑈) + 1) ≤ 𝑏))
5849, 52, 56, 57syl3anbrc 1176 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ (ℤ‘((𝐹𝑈) + 1)))
5948, 58elind 3312 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
6059ex 114 . . . . . . . 8 (𝜑 → ((𝑏𝐴 ∧ (𝐹𝑈) < 𝑏) → 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
6160eximdv 1873 . . . . . . 7 (𝜑 → (∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏) → ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
6247, 61mpd 13 . . . . . 6 (𝜑 → ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
6325, 39, 62nninfdcex 11908 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ (∀𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))𝑟 < 𝑏)))
64 nnssre 8882 . . . . . 6 ℕ ⊆ ℝ
6525, 64sstrdi 3159 . . . . 5 (𝜑 → (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℝ)
6663, 65, 13infregelbex 9557 . . . 4 (𝜑 → (((𝐹𝑈) + 1) ≤ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ↔ ∀𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))((𝐹𝑈) + 1) ≤ 𝑟))
6723, 66mpbird 166 . . 3 (𝜑 → ((𝐹𝑈) + 1) ≤ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
685fveq1i 5497 . . . . 5 (𝐹‘(𝑈 + 1)) = (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘(𝑈 + 1))
69 nnuz 9522 . . . . . . 7 ℕ = (ℤ‘1)
707, 69eleqtrdi 2263 . . . . . 6 (𝜑𝑈 ∈ (ℤ‘1))
71 eqid 2170 . . . . . . . 8 (𝑖 ∈ ℕ ↦ 𝐽) = (𝑖 ∈ ℕ ↦ 𝐽)
72 eqidd 2171 . . . . . . . 8 (𝑖 = 𝑝𝐽 = 𝐽)
73 elnnuz 9523 . . . . . . . . . 10 (𝑝 ∈ ℕ ↔ 𝑝 ∈ (ℤ‘1))
7473biimpri 132 . . . . . . . . 9 (𝑝 ∈ (ℤ‘1) → 𝑝 ∈ ℕ)
7574adantl 275 . . . . . . . 8 ((𝜑𝑝 ∈ (ℤ‘1)) → 𝑝 ∈ ℕ)
764simpld 111 . . . . . . . . 9 (𝜑𝐽𝐴)
7776adantr 274 . . . . . . . 8 ((𝜑𝑝 ∈ (ℤ‘1)) → 𝐽𝐴)
7871, 72, 75, 77fvmptd3 5589 . . . . . . 7 ((𝜑𝑝 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) = 𝐽)
7978, 77eqeltrd 2247 . . . . . 6 ((𝜑𝑝 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) ∈ 𝐴)
801adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝐴 ⊆ ℕ)
812adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
823adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
83 simprl 526 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝑝𝐴)
84 simprr 527 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝑞𝐴)
8580, 81, 82, 83, 84nninfdclemcl 12403 . . . . . 6 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → (𝑝(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑞) ∈ 𝐴)
8670, 79, 85seq3p1 10418 . . . . 5 (𝜑 → (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘(𝑈 + 1)) = ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))))
8768, 86eqtrid 2215 . . . 4 (𝜑 → (𝐹‘(𝑈 + 1)) = ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))))
885fveq1i 5497 . . . . . . 7 (𝐹𝑈) = (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)
8988eqcomi 2174 . . . . . 6 (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈) = (𝐹𝑈)
9089a1i 9 . . . . 5 (𝜑 → (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈) = (𝐹𝑈))
91 eqidd 2171 . . . . . 6 (𝑖 = (𝑈 + 1) → 𝐽 = 𝐽)
9271, 91, 14, 76fvmptd3 5589 . . . . 5 (𝜑 → ((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1)) = 𝐽)
9390, 92oveq12d 5871 . . . 4 (𝜑 → ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))) = ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽))
941, 76sseldd 3148 . . . . 5 (𝜑𝐽 ∈ ℕ)
95 eleq1w 2231 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (𝑥𝐴𝑠𝐴))
9695dcbid 833 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (DECID 𝑥𝐴DECID 𝑠𝐴))
972adantr 274 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
98 simpr 109 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℕ)
9996, 97, 98rspcdva 2839 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠𝐴)
10098nnzd 9333 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
101 eluzdc 9569 . . . . . . . . . . . 12 ((((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) → DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))
10212, 100, 101syl2an2r 590 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))
103 dcan2 929 . . . . . . . . . . 11 (DECID 𝑠𝐴 → (DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))))
10499, 102, 103sylc 62 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
105 elin 3310 . . . . . . . . . . 11 (𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
106105dcbii 835 . . . . . . . . . 10 (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
107104, 106sylibr 133 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
108107ralrimiva 2543 . . . . . . . 8 (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
109 eleq1w 2231 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
110109dcbid 833 . . . . . . . . 9 (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
111110cbvralv 2696 . . . . . . . 8 (∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
112108, 111sylib 121 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
113 nnmindc 11989 . . . . . . 7 (((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ∧ ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
11425, 112, 62, 113syl3anc 1233 . . . . . 6 (𝜑 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
115114elin1d 3316 . . . . 5 (𝜑 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ 𝐴)
116 fvoveq1 5876 . . . . . . . 8 (𝑦 = (𝐹𝑈) → (ℤ‘(𝑦 + 1)) = (ℤ‘((𝐹𝑈) + 1)))
117116ineq2d 3328 . . . . . . 7 (𝑦 = (𝐹𝑈) → (𝐴 ∩ (ℤ‘(𝑦 + 1))) = (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
118117infeq1d 6989 . . . . . 6 (𝑦 = (𝐹𝑈) → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
119 eqidd 2171 . . . . . 6 (𝑧 = 𝐽 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
120 eqid 2170 . . . . . 6 (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
121118, 119, 120ovmpog 5987 . . . . 5 (((𝐹𝑈) ∈ ℕ ∧ 𝐽 ∈ ℕ ∧ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ 𝐴) → ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
1229, 94, 115, 121syl3anc 1233 . . . 4 (𝜑 → ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
12387, 93, 1223eqtrd 2207 . . 3 (𝜑 → (𝐹‘(𝑈 + 1)) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
12467, 123breqtrrd 4017 . 2 (𝜑 → ((𝐹𝑈) + 1) ≤ (𝐹‘(𝑈 + 1)))
12510, 13, 17, 18, 124ltletrd 8342 1 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 829   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  cin 3120  wss 3121   class class class wbr 3989  cmpt 4050  cfv 5198  (class class class)co 5853  cmpo 5855  infcinf 6960  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cle 7955  cn 8878  cz 9212  cuz 9487  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099  df-seqfrec 10402
This theorem is referenced by:  nninfdclemlt  12406
  Copyright terms: Public domain W3C validator