ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemp1 GIF version

Theorem nninfdclemp1 12434
Description: Lemma for nninfdc 12437. Each element of the sequence 𝐹 is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
nninfdclemp1.u (𝜑𝑈 ∈ ℕ)
Assertion
Ref Expression
nninfdclemp1 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑦,𝐴,𝑧   𝑥,𝐴   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑦,𝐽,𝑧   𝑈,𝑖   𝑈,𝑚,𝑛   𝑥,𝑈   𝑦,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemp1
Dummy variables 𝑎 𝑏 𝑟 𝑝 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemf.dc . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
3 nninfdclemf.nb . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
4 nninfdclemf.j . . . . . 6 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
5 nninfdclemf.f . . . . . 6 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
61, 2, 3, 4, 5nninfdclemf 12433 . . . . 5 (𝜑𝐹:ℕ⟶𝐴)
7 nninfdclemp1.u . . . . 5 (𝜑𝑈 ∈ ℕ)
86, 7ffvelcdmd 5648 . . . 4 (𝜑 → (𝐹𝑈) ∈ 𝐴)
91, 8sseldd 3156 . . 3 (𝜑 → (𝐹𝑈) ∈ ℕ)
109nnred 8921 . 2 (𝜑 → (𝐹𝑈) ∈ ℝ)
119nnzd 9363 . . . 4 (𝜑 → (𝐹𝑈) ∈ ℤ)
1211peano2zd 9367 . . 3 (𝜑 → ((𝐹𝑈) + 1) ∈ ℤ)
1312zred 9364 . 2 (𝜑 → ((𝐹𝑈) + 1) ∈ ℝ)
147peano2nnd 8923 . . . . 5 (𝜑 → (𝑈 + 1) ∈ ℕ)
156, 14ffvelcdmd 5648 . . . 4 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ 𝐴)
161, 15sseldd 3156 . . 3 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ ℕ)
1716nnred 8921 . 2 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ ℝ)
1810ltp1d 8876 . 2 (𝜑 → (𝐹𝑈) < ((𝐹𝑈) + 1))
19 simpr 110 . . . . . . 7 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → 𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
2019elin2d 3325 . . . . . 6 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → 𝑟 ∈ (ℤ‘((𝐹𝑈) + 1)))
21 eluzle 9529 . . . . . 6 (𝑟 ∈ (ℤ‘((𝐹𝑈) + 1)) → ((𝐹𝑈) + 1) ≤ 𝑟)
2220, 21syl 14 . . . . 5 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → ((𝐹𝑈) + 1) ≤ 𝑟)
2322ralrimiva 2550 . . . 4 (𝜑 → ∀𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))((𝐹𝑈) + 1) ≤ 𝑟)
24 inss1 3355 . . . . . . 7 (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ 𝐴
2524, 1sstrid 3166 . . . . . 6 (𝜑 → (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℕ)
26 eleq1w 2238 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
2726dcbid 838 . . . . . . . . . 10 (𝑥 = 𝑎 → (DECID 𝑥𝐴DECID 𝑎𝐴))
282adantr 276 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
29 simpr 110 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℕ)
3027, 28, 29rspcdva 2846 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎𝐴)
3129nnzd 9363 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℤ)
32 eluzdc 9599 . . . . . . . . . 10 ((((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑎 ∈ ℤ) → DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))
3312, 31, 32syl2an2r 595 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))
34 dcan2 934 . . . . . . . . 9 (DECID 𝑎𝐴 → (DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)) → DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))))
3530, 33, 34sylc 62 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ) → DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
36 elin 3318 . . . . . . . . 9 (𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
3736dcbii 840 . . . . . . . 8 (DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
3835, 37sylibr 134 . . . . . . 7 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
3938ralrimiva 2550 . . . . . 6 (𝜑 → ∀𝑎 ∈ ℕ DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
40 breq1 4003 . . . . . . . . . . 11 (𝑚 = (𝐹𝑈) → (𝑚 < 𝑛 ↔ (𝐹𝑈) < 𝑛))
4140rexbidv 2478 . . . . . . . . . 10 (𝑚 = (𝐹𝑈) → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 (𝐹𝑈) < 𝑛))
4241, 3, 9rspcdva 2846 . . . . . . . . 9 (𝜑 → ∃𝑛𝐴 (𝐹𝑈) < 𝑛)
43 breq2 4004 . . . . . . . . . 10 (𝑛 = 𝑏 → ((𝐹𝑈) < 𝑛 ↔ (𝐹𝑈) < 𝑏))
4443cbvrexv 2704 . . . . . . . . 9 (∃𝑛𝐴 (𝐹𝑈) < 𝑛 ↔ ∃𝑏𝐴 (𝐹𝑈) < 𝑏)
4542, 44sylib 122 . . . . . . . 8 (𝜑 → ∃𝑏𝐴 (𝐹𝑈) < 𝑏)
46 df-rex 2461 . . . . . . . 8 (∃𝑏𝐴 (𝐹𝑈) < 𝑏 ↔ ∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏))
4745, 46sylib 122 . . . . . . 7 (𝜑 → ∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏))
48 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏𝐴)
4912adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) + 1) ∈ ℤ)
501adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝐴 ⊆ ℕ)
5150, 48sseldd 3156 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ ℕ)
5251nnzd 9363 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ ℤ)
53 simprr 531 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → (𝐹𝑈) < 𝑏)
54 nnltp1le 9302 . . . . . . . . . . . . 13 (((𝐹𝑈) ∈ ℕ ∧ 𝑏 ∈ ℕ) → ((𝐹𝑈) < 𝑏 ↔ ((𝐹𝑈) + 1) ≤ 𝑏))
559, 51, 54syl2an2r 595 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) < 𝑏 ↔ ((𝐹𝑈) + 1) ≤ 𝑏))
5653, 55mpbid 147 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) + 1) ≤ 𝑏)
57 eluz2 9523 . . . . . . . . . . 11 (𝑏 ∈ (ℤ‘((𝐹𝑈) + 1)) ↔ (((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ ((𝐹𝑈) + 1) ≤ 𝑏))
5849, 52, 56, 57syl3anbrc 1181 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ (ℤ‘((𝐹𝑈) + 1)))
5948, 58elind 3320 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
6059ex 115 . . . . . . . 8 (𝜑 → ((𝑏𝐴 ∧ (𝐹𝑈) < 𝑏) → 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
6160eximdv 1880 . . . . . . 7 (𝜑 → (∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏) → ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
6247, 61mpd 13 . . . . . 6 (𝜑 → ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
6325, 39, 62nninfdcex 11937 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ (∀𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))𝑟 < 𝑏)))
64 nnssre 8912 . . . . . 6 ℕ ⊆ ℝ
6525, 64sstrdi 3167 . . . . 5 (𝜑 → (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℝ)
6663, 65, 13infregelbex 9587 . . . 4 (𝜑 → (((𝐹𝑈) + 1) ≤ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ↔ ∀𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))((𝐹𝑈) + 1) ≤ 𝑟))
6723, 66mpbird 167 . . 3 (𝜑 → ((𝐹𝑈) + 1) ≤ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
685fveq1i 5512 . . . . 5 (𝐹‘(𝑈 + 1)) = (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘(𝑈 + 1))
69 nnuz 9552 . . . . . . 7 ℕ = (ℤ‘1)
707, 69eleqtrdi 2270 . . . . . 6 (𝜑𝑈 ∈ (ℤ‘1))
71 eqid 2177 . . . . . . . 8 (𝑖 ∈ ℕ ↦ 𝐽) = (𝑖 ∈ ℕ ↦ 𝐽)
72 eqidd 2178 . . . . . . . 8 (𝑖 = 𝑝𝐽 = 𝐽)
73 elnnuz 9553 . . . . . . . . . 10 (𝑝 ∈ ℕ ↔ 𝑝 ∈ (ℤ‘1))
7473biimpri 133 . . . . . . . . 9 (𝑝 ∈ (ℤ‘1) → 𝑝 ∈ ℕ)
7574adantl 277 . . . . . . . 8 ((𝜑𝑝 ∈ (ℤ‘1)) → 𝑝 ∈ ℕ)
764simpld 112 . . . . . . . . 9 (𝜑𝐽𝐴)
7776adantr 276 . . . . . . . 8 ((𝜑𝑝 ∈ (ℤ‘1)) → 𝐽𝐴)
7871, 72, 75, 77fvmptd3 5605 . . . . . . 7 ((𝜑𝑝 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) = 𝐽)
7978, 77eqeltrd 2254 . . . . . 6 ((𝜑𝑝 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) ∈ 𝐴)
801adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝐴 ⊆ ℕ)
812adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
823adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
83 simprl 529 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝑝𝐴)
84 simprr 531 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝑞𝐴)
8580, 81, 82, 83, 84nninfdclemcl 12432 . . . . . 6 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → (𝑝(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑞) ∈ 𝐴)
8670, 79, 85seq3p1 10448 . . . . 5 (𝜑 → (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘(𝑈 + 1)) = ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))))
8768, 86eqtrid 2222 . . . 4 (𝜑 → (𝐹‘(𝑈 + 1)) = ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))))
885fveq1i 5512 . . . . . . 7 (𝐹𝑈) = (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)
8988eqcomi 2181 . . . . . 6 (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈) = (𝐹𝑈)
9089a1i 9 . . . . 5 (𝜑 → (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈) = (𝐹𝑈))
91 eqidd 2178 . . . . . 6 (𝑖 = (𝑈 + 1) → 𝐽 = 𝐽)
9271, 91, 14, 76fvmptd3 5605 . . . . 5 (𝜑 → ((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1)) = 𝐽)
9390, 92oveq12d 5887 . . . 4 (𝜑 → ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))) = ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽))
941, 76sseldd 3156 . . . . 5 (𝜑𝐽 ∈ ℕ)
95 eleq1w 2238 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (𝑥𝐴𝑠𝐴))
9695dcbid 838 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (DECID 𝑥𝐴DECID 𝑠𝐴))
972adantr 276 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
98 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℕ)
9996, 97, 98rspcdva 2846 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠𝐴)
10098nnzd 9363 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
101 eluzdc 9599 . . . . . . . . . . . 12 ((((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) → DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))
10212, 100, 101syl2an2r 595 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))
103 dcan2 934 . . . . . . . . . . 11 (DECID 𝑠𝐴 → (DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))))
10499, 102, 103sylc 62 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
105 elin 3318 . . . . . . . . . . 11 (𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
106105dcbii 840 . . . . . . . . . 10 (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
107104, 106sylibr 134 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
108107ralrimiva 2550 . . . . . . . 8 (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
109 eleq1w 2238 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
110109dcbid 838 . . . . . . . . 9 (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
111110cbvralv 2703 . . . . . . . 8 (∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
112108, 111sylib 122 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
113 nnmindc 12018 . . . . . . 7 (((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ∧ ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
11425, 112, 62, 113syl3anc 1238 . . . . . 6 (𝜑 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
115114elin1d 3324 . . . . 5 (𝜑 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ 𝐴)
116 fvoveq1 5892 . . . . . . . 8 (𝑦 = (𝐹𝑈) → (ℤ‘(𝑦 + 1)) = (ℤ‘((𝐹𝑈) + 1)))
117116ineq2d 3336 . . . . . . 7 (𝑦 = (𝐹𝑈) → (𝐴 ∩ (ℤ‘(𝑦 + 1))) = (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
118117infeq1d 7005 . . . . . 6 (𝑦 = (𝐹𝑈) → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
119 eqidd 2178 . . . . . 6 (𝑧 = 𝐽 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
120 eqid 2177 . . . . . 6 (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
121118, 119, 120ovmpog 6003 . . . . 5 (((𝐹𝑈) ∈ ℕ ∧ 𝐽 ∈ ℕ ∧ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ 𝐴) → ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
1229, 94, 115, 121syl3anc 1238 . . . 4 (𝜑 → ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
12387, 93, 1223eqtrd 2214 . . 3 (𝜑 → (𝐹‘(𝑈 + 1)) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
12467, 123breqtrrd 4028 . 2 (𝜑 → ((𝐹𝑈) + 1) ≤ (𝐹‘(𝑈 + 1)))
12510, 13, 17, 18, 124ltletrd 8370 1 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  cin 3128  wss 3129   class class class wbr 4000  cmpt 4061  cfv 5212  (class class class)co 5869  cmpo 5871  infcinf 6976  cr 7801  1c1 7803   + caddc 7805   < clt 7982  cle 7983  cn 8908  cz 9242  cuz 9517  seqcseq 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129  df-seqfrec 10432
This theorem is referenced by:  nninfdclemlt  12435
  Copyright terms: Public domain W3C validator