ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemp1 GIF version

Theorem nninfdclemp1 12896
Description: Lemma for nninfdc 12899. Each element of the sequence 𝐹 is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
nninfdclemp1.u (𝜑𝑈 ∈ ℕ)
Assertion
Ref Expression
nninfdclemp1 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑦,𝐴,𝑧   𝑥,𝐴   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑦,𝐽,𝑧   𝑈,𝑖   𝑈,𝑚,𝑛   𝑥,𝑈   𝑦,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemp1
Dummy variables 𝑎 𝑏 𝑟 𝑝 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemf.dc . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
3 nninfdclemf.nb . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
4 nninfdclemf.j . . . . . 6 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
5 nninfdclemf.f . . . . . 6 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
61, 2, 3, 4, 5nninfdclemf 12895 . . . . 5 (𝜑𝐹:ℕ⟶𝐴)
7 nninfdclemp1.u . . . . 5 (𝜑𝑈 ∈ ℕ)
86, 7ffvelcdmd 5729 . . . 4 (𝜑 → (𝐹𝑈) ∈ 𝐴)
91, 8sseldd 3198 . . 3 (𝜑 → (𝐹𝑈) ∈ ℕ)
109nnred 9069 . 2 (𝜑 → (𝐹𝑈) ∈ ℝ)
119nnzd 9514 . . . 4 (𝜑 → (𝐹𝑈) ∈ ℤ)
1211peano2zd 9518 . . 3 (𝜑 → ((𝐹𝑈) + 1) ∈ ℤ)
1312zred 9515 . 2 (𝜑 → ((𝐹𝑈) + 1) ∈ ℝ)
147peano2nnd 9071 . . . . 5 (𝜑 → (𝑈 + 1) ∈ ℕ)
156, 14ffvelcdmd 5729 . . . 4 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ 𝐴)
161, 15sseldd 3198 . . 3 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ ℕ)
1716nnred 9069 . 2 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ ℝ)
1810ltp1d 9023 . 2 (𝜑 → (𝐹𝑈) < ((𝐹𝑈) + 1))
19 simpr 110 . . . . . . 7 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → 𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
2019elin2d 3367 . . . . . 6 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → 𝑟 ∈ (ℤ‘((𝐹𝑈) + 1)))
21 eluzle 9680 . . . . . 6 (𝑟 ∈ (ℤ‘((𝐹𝑈) + 1)) → ((𝐹𝑈) + 1) ≤ 𝑟)
2220, 21syl 14 . . . . 5 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → ((𝐹𝑈) + 1) ≤ 𝑟)
2322ralrimiva 2580 . . . 4 (𝜑 → ∀𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))((𝐹𝑈) + 1) ≤ 𝑟)
24 inss1 3397 . . . . . . 7 (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ 𝐴
2524, 1sstrid 3208 . . . . . 6 (𝜑 → (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℕ)
26 eleq1w 2267 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
2726dcbid 840 . . . . . . . . . 10 (𝑥 = 𝑎 → (DECID 𝑥𝐴DECID 𝑎𝐴))
282adantr 276 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
29 simpr 110 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℕ)
3027, 28, 29rspcdva 2886 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎𝐴)
3129nnzd 9514 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℤ)
32 eluzdc 9751 . . . . . . . . . 10 ((((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑎 ∈ ℤ) → DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))
3312, 31, 32syl2an2r 595 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))
34 dcan2 937 . . . . . . . . 9 (DECID 𝑎𝐴 → (DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)) → DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))))
3530, 33, 34sylc 62 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ) → DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
36 elin 3360 . . . . . . . . 9 (𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
3736dcbii 842 . . . . . . . 8 (DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
3835, 37sylibr 134 . . . . . . 7 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
3938ralrimiva 2580 . . . . . 6 (𝜑 → ∀𝑎 ∈ ℕ DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
40 breq1 4054 . . . . . . . . . . 11 (𝑚 = (𝐹𝑈) → (𝑚 < 𝑛 ↔ (𝐹𝑈) < 𝑛))
4140rexbidv 2508 . . . . . . . . . 10 (𝑚 = (𝐹𝑈) → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 (𝐹𝑈) < 𝑛))
4241, 3, 9rspcdva 2886 . . . . . . . . 9 (𝜑 → ∃𝑛𝐴 (𝐹𝑈) < 𝑛)
43 breq2 4055 . . . . . . . . . 10 (𝑛 = 𝑏 → ((𝐹𝑈) < 𝑛 ↔ (𝐹𝑈) < 𝑏))
4443cbvrexv 2740 . . . . . . . . 9 (∃𝑛𝐴 (𝐹𝑈) < 𝑛 ↔ ∃𝑏𝐴 (𝐹𝑈) < 𝑏)
4542, 44sylib 122 . . . . . . . 8 (𝜑 → ∃𝑏𝐴 (𝐹𝑈) < 𝑏)
46 df-rex 2491 . . . . . . . 8 (∃𝑏𝐴 (𝐹𝑈) < 𝑏 ↔ ∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏))
4745, 46sylib 122 . . . . . . 7 (𝜑 → ∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏))
48 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏𝐴)
4912adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) + 1) ∈ ℤ)
501adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝐴 ⊆ ℕ)
5150, 48sseldd 3198 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ ℕ)
5251nnzd 9514 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ ℤ)
53 simprr 531 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → (𝐹𝑈) < 𝑏)
54 nnltp1le 9453 . . . . . . . . . . . . 13 (((𝐹𝑈) ∈ ℕ ∧ 𝑏 ∈ ℕ) → ((𝐹𝑈) < 𝑏 ↔ ((𝐹𝑈) + 1) ≤ 𝑏))
559, 51, 54syl2an2r 595 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) < 𝑏 ↔ ((𝐹𝑈) + 1) ≤ 𝑏))
5653, 55mpbid 147 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) + 1) ≤ 𝑏)
57 eluz2 9674 . . . . . . . . . . 11 (𝑏 ∈ (ℤ‘((𝐹𝑈) + 1)) ↔ (((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ ((𝐹𝑈) + 1) ≤ 𝑏))
5849, 52, 56, 57syl3anbrc 1184 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ (ℤ‘((𝐹𝑈) + 1)))
5948, 58elind 3362 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
6059ex 115 . . . . . . . 8 (𝜑 → ((𝑏𝐴 ∧ (𝐹𝑈) < 𝑏) → 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
6160eximdv 1904 . . . . . . 7 (𝜑 → (∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏) → ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
6247, 61mpd 13 . . . . . 6 (𝜑 → ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
6325, 39, 62nninfdcex 10402 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ (∀𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))𝑟 < 𝑏)))
64 nnssre 9060 . . . . . 6 ℕ ⊆ ℝ
6525, 64sstrdi 3209 . . . . 5 (𝜑 → (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℝ)
6663, 65, 13infregelbex 9739 . . . 4 (𝜑 → (((𝐹𝑈) + 1) ≤ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ↔ ∀𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))((𝐹𝑈) + 1) ≤ 𝑟))
6723, 66mpbird 167 . . 3 (𝜑 → ((𝐹𝑈) + 1) ≤ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
685fveq1i 5590 . . . . 5 (𝐹‘(𝑈 + 1)) = (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘(𝑈 + 1))
69 nnuz 9704 . . . . . . 7 ℕ = (ℤ‘1)
707, 69eleqtrdi 2299 . . . . . 6 (𝜑𝑈 ∈ (ℤ‘1))
71 eqid 2206 . . . . . . . 8 (𝑖 ∈ ℕ ↦ 𝐽) = (𝑖 ∈ ℕ ↦ 𝐽)
72 eqidd 2207 . . . . . . . 8 (𝑖 = 𝑝𝐽 = 𝐽)
73 elnnuz 9705 . . . . . . . . . 10 (𝑝 ∈ ℕ ↔ 𝑝 ∈ (ℤ‘1))
7473biimpri 133 . . . . . . . . 9 (𝑝 ∈ (ℤ‘1) → 𝑝 ∈ ℕ)
7574adantl 277 . . . . . . . 8 ((𝜑𝑝 ∈ (ℤ‘1)) → 𝑝 ∈ ℕ)
764simpld 112 . . . . . . . . 9 (𝜑𝐽𝐴)
7776adantr 276 . . . . . . . 8 ((𝜑𝑝 ∈ (ℤ‘1)) → 𝐽𝐴)
7871, 72, 75, 77fvmptd3 5686 . . . . . . 7 ((𝜑𝑝 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) = 𝐽)
7978, 77eqeltrd 2283 . . . . . 6 ((𝜑𝑝 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) ∈ 𝐴)
801adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝐴 ⊆ ℕ)
812adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
823adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
83 simprl 529 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝑝𝐴)
84 simprr 531 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝑞𝐴)
8580, 81, 82, 83, 84nninfdclemcl 12894 . . . . . 6 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → (𝑝(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑞) ∈ 𝐴)
8670, 79, 85seq3p1 10632 . . . . 5 (𝜑 → (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘(𝑈 + 1)) = ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))))
8768, 86eqtrid 2251 . . . 4 (𝜑 → (𝐹‘(𝑈 + 1)) = ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))))
885fveq1i 5590 . . . . . . 7 (𝐹𝑈) = (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)
8988eqcomi 2210 . . . . . 6 (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈) = (𝐹𝑈)
9089a1i 9 . . . . 5 (𝜑 → (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈) = (𝐹𝑈))
91 eqidd 2207 . . . . . 6 (𝑖 = (𝑈 + 1) → 𝐽 = 𝐽)
9271, 91, 14, 76fvmptd3 5686 . . . . 5 (𝜑 → ((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1)) = 𝐽)
9390, 92oveq12d 5975 . . . 4 (𝜑 → ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))) = ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽))
941, 76sseldd 3198 . . . . 5 (𝜑𝐽 ∈ ℕ)
95 eleq1w 2267 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (𝑥𝐴𝑠𝐴))
9695dcbid 840 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (DECID 𝑥𝐴DECID 𝑠𝐴))
972adantr 276 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
98 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℕ)
9996, 97, 98rspcdva 2886 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠𝐴)
10098nnzd 9514 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
101 eluzdc 9751 . . . . . . . . . . . 12 ((((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) → DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))
10212, 100, 101syl2an2r 595 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))
103 dcan2 937 . . . . . . . . . . 11 (DECID 𝑠𝐴 → (DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))))
10499, 102, 103sylc 62 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
105 elin 3360 . . . . . . . . . . 11 (𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
106105dcbii 842 . . . . . . . . . 10 (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
107104, 106sylibr 134 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
108107ralrimiva 2580 . . . . . . . 8 (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
109 eleq1w 2267 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
110109dcbid 840 . . . . . . . . 9 (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
111110cbvralv 2739 . . . . . . . 8 (∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
112108, 111sylib 122 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
113 nnmindc 12430 . . . . . . 7 (((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ∧ ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
11425, 112, 62, 113syl3anc 1250 . . . . . 6 (𝜑 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
115114elin1d 3366 . . . . 5 (𝜑 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ 𝐴)
116 fvoveq1 5980 . . . . . . . 8 (𝑦 = (𝐹𝑈) → (ℤ‘(𝑦 + 1)) = (ℤ‘((𝐹𝑈) + 1)))
117116ineq2d 3378 . . . . . . 7 (𝑦 = (𝐹𝑈) → (𝐴 ∩ (ℤ‘(𝑦 + 1))) = (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
118117infeq1d 7129 . . . . . 6 (𝑦 = (𝐹𝑈) → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
119 eqidd 2207 . . . . . 6 (𝑧 = 𝐽 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
120 eqid 2206 . . . . . 6 (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
121118, 119, 120ovmpog 6093 . . . . 5 (((𝐹𝑈) ∈ ℕ ∧ 𝐽 ∈ ℕ ∧ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ 𝐴) → ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
1229, 94, 115, 121syl3anc 1250 . . . 4 (𝜑 → ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
12387, 93, 1223eqtrd 2243 . . 3 (𝜑 → (𝐹‘(𝑈 + 1)) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
12467, 123breqtrrd 4079 . 2 (𝜑 → ((𝐹𝑈) + 1) ≤ (𝐹‘(𝑈 + 1)))
12510, 13, 17, 18, 124ltletrd 8516 1 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486  cin 3169  wss 3170   class class class wbr 4051  cmpt 4113  cfv 5280  (class class class)co 5957  cmpo 5959  infcinf 7100  cr 7944  1c1 7946   + caddc 7948   < clt 8127  cle 8128  cn 9056  cz 9392  cuz 9668  seqcseq 10614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-seqfrec 10615
This theorem is referenced by:  nninfdclemlt  12897
  Copyright terms: Public domain W3C validator