ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemp1 GIF version

Theorem nninfdclemp1 12379
Description: Lemma for nninfdc 12382. Each element of the sequence 𝐹 is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
nninfdclemp1.u (𝜑𝑈 ∈ ℕ)
Assertion
Ref Expression
nninfdclemp1 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑦,𝐴,𝑧   𝑥,𝐴   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑦,𝐽,𝑧   𝑈,𝑖   𝑈,𝑚,𝑛   𝑥,𝑈   𝑦,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemp1
Dummy variables 𝑎 𝑏 𝑟 𝑝 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemf.dc . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
3 nninfdclemf.nb . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
4 nninfdclemf.j . . . . . 6 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
5 nninfdclemf.f . . . . . 6 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
61, 2, 3, 4, 5nninfdclemf 12378 . . . . 5 (𝜑𝐹:ℕ⟶𝐴)
7 nninfdclemp1.u . . . . 5 (𝜑𝑈 ∈ ℕ)
86, 7ffvelrnd 5620 . . . 4 (𝜑 → (𝐹𝑈) ∈ 𝐴)
91, 8sseldd 3142 . . 3 (𝜑 → (𝐹𝑈) ∈ ℕ)
109nnred 8866 . 2 (𝜑 → (𝐹𝑈) ∈ ℝ)
119nnzd 9308 . . . 4 (𝜑 → (𝐹𝑈) ∈ ℤ)
1211peano2zd 9312 . . 3 (𝜑 → ((𝐹𝑈) + 1) ∈ ℤ)
1312zred 9309 . 2 (𝜑 → ((𝐹𝑈) + 1) ∈ ℝ)
147peano2nnd 8868 . . . . 5 (𝜑 → (𝑈 + 1) ∈ ℕ)
156, 14ffvelrnd 5620 . . . 4 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ 𝐴)
161, 15sseldd 3142 . . 3 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ ℕ)
1716nnred 8866 . 2 (𝜑 → (𝐹‘(𝑈 + 1)) ∈ ℝ)
1810ltp1d 8821 . 2 (𝜑 → (𝐹𝑈) < ((𝐹𝑈) + 1))
19 simpr 109 . . . . . . 7 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → 𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
2019elin2d 3311 . . . . . 6 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → 𝑟 ∈ (ℤ‘((𝐹𝑈) + 1)))
21 eluzle 9474 . . . . . 6 (𝑟 ∈ (ℤ‘((𝐹𝑈) + 1)) → ((𝐹𝑈) + 1) ≤ 𝑟)
2220, 21syl 14 . . . . 5 ((𝜑𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → ((𝐹𝑈) + 1) ≤ 𝑟)
2322ralrimiva 2538 . . . 4 (𝜑 → ∀𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))((𝐹𝑈) + 1) ≤ 𝑟)
24 inss1 3341 . . . . . . 7 (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ 𝐴
2524, 1sstrid 3152 . . . . . 6 (𝜑 → (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℕ)
26 eleq1w 2226 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
2726dcbid 828 . . . . . . . . . 10 (𝑥 = 𝑎 → (DECID 𝑥𝐴DECID 𝑎𝐴))
282adantr 274 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
29 simpr 109 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℕ)
3027, 28, 29rspcdva 2834 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎𝐴)
3129nnzd 9308 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℤ)
32 eluzdc 9544 . . . . . . . . . 10 ((((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑎 ∈ ℤ) → DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))
3312, 31, 32syl2an2r 585 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))
34 dcan2 924 . . . . . . . . 9 (DECID 𝑎𝐴 → (DECID 𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)) → DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1)))))
3530, 33, 34sylc 62 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ) → DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
36 elin 3304 . . . . . . . . 9 (𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
3736dcbii 830 . . . . . . . 8 (DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID (𝑎𝐴𝑎 ∈ (ℤ‘((𝐹𝑈) + 1))))
3835, 37sylibr 133 . . . . . . 7 ((𝜑𝑎 ∈ ℕ) → DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
3938ralrimiva 2538 . . . . . 6 (𝜑 → ∀𝑎 ∈ ℕ DECID 𝑎 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
40 breq1 3984 . . . . . . . . . . 11 (𝑚 = (𝐹𝑈) → (𝑚 < 𝑛 ↔ (𝐹𝑈) < 𝑛))
4140rexbidv 2466 . . . . . . . . . 10 (𝑚 = (𝐹𝑈) → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 (𝐹𝑈) < 𝑛))
4241, 3, 9rspcdva 2834 . . . . . . . . 9 (𝜑 → ∃𝑛𝐴 (𝐹𝑈) < 𝑛)
43 breq2 3985 . . . . . . . . . 10 (𝑛 = 𝑏 → ((𝐹𝑈) < 𝑛 ↔ (𝐹𝑈) < 𝑏))
4443cbvrexv 2692 . . . . . . . . 9 (∃𝑛𝐴 (𝐹𝑈) < 𝑛 ↔ ∃𝑏𝐴 (𝐹𝑈) < 𝑏)
4542, 44sylib 121 . . . . . . . 8 (𝜑 → ∃𝑏𝐴 (𝐹𝑈) < 𝑏)
46 df-rex 2449 . . . . . . . 8 (∃𝑏𝐴 (𝐹𝑈) < 𝑏 ↔ ∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏))
4745, 46sylib 121 . . . . . . 7 (𝜑 → ∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏))
48 simprl 521 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏𝐴)
4912adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) + 1) ∈ ℤ)
501adantr 274 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝐴 ⊆ ℕ)
5150, 48sseldd 3142 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ ℕ)
5251nnzd 9308 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ ℤ)
53 simprr 522 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → (𝐹𝑈) < 𝑏)
54 nnltp1le 9247 . . . . . . . . . . . . 13 (((𝐹𝑈) ∈ ℕ ∧ 𝑏 ∈ ℕ) → ((𝐹𝑈) < 𝑏 ↔ ((𝐹𝑈) + 1) ≤ 𝑏))
559, 51, 54syl2an2r 585 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) < 𝑏 ↔ ((𝐹𝑈) + 1) ≤ 𝑏))
5653, 55mpbid 146 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → ((𝐹𝑈) + 1) ≤ 𝑏)
57 eluz2 9468 . . . . . . . . . . 11 (𝑏 ∈ (ℤ‘((𝐹𝑈) + 1)) ↔ (((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ ((𝐹𝑈) + 1) ≤ 𝑏))
5849, 52, 56, 57syl3anbrc 1171 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ (ℤ‘((𝐹𝑈) + 1)))
5948, 58elind 3306 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ (𝐹𝑈) < 𝑏)) → 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
6059ex 114 . . . . . . . 8 (𝜑 → ((𝑏𝐴 ∧ (𝐹𝑈) < 𝑏) → 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
6160eximdv 1868 . . . . . . 7 (𝜑 → (∃𝑏(𝑏𝐴 ∧ (𝐹𝑈) < 𝑏) → ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
6247, 61mpd 13 . . . . . 6 (𝜑 → ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
6325, 39, 62nninfdcex 11882 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ (∀𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))𝑟 < 𝑏)))
64 nnssre 8857 . . . . . 6 ℕ ⊆ ℝ
6525, 64sstrdi 3153 . . . . 5 (𝜑 → (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℝ)
6663, 65, 13infregelbex 9532 . . . 4 (𝜑 → (((𝐹𝑈) + 1) ≤ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ↔ ∀𝑟 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))((𝐹𝑈) + 1) ≤ 𝑟))
6723, 66mpbird 166 . . 3 (𝜑 → ((𝐹𝑈) + 1) ≤ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
685fveq1i 5486 . . . . 5 (𝐹‘(𝑈 + 1)) = (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘(𝑈 + 1))
69 nnuz 9497 . . . . . . 7 ℕ = (ℤ‘1)
707, 69eleqtrdi 2258 . . . . . 6 (𝜑𝑈 ∈ (ℤ‘1))
71 eqid 2165 . . . . . . . 8 (𝑖 ∈ ℕ ↦ 𝐽) = (𝑖 ∈ ℕ ↦ 𝐽)
72 eqidd 2166 . . . . . . . 8 (𝑖 = 𝑝𝐽 = 𝐽)
73 elnnuz 9498 . . . . . . . . . 10 (𝑝 ∈ ℕ ↔ 𝑝 ∈ (ℤ‘1))
7473biimpri 132 . . . . . . . . 9 (𝑝 ∈ (ℤ‘1) → 𝑝 ∈ ℕ)
7574adantl 275 . . . . . . . 8 ((𝜑𝑝 ∈ (ℤ‘1)) → 𝑝 ∈ ℕ)
764simpld 111 . . . . . . . . 9 (𝜑𝐽𝐴)
7776adantr 274 . . . . . . . 8 ((𝜑𝑝 ∈ (ℤ‘1)) → 𝐽𝐴)
7871, 72, 75, 77fvmptd3 5578 . . . . . . 7 ((𝜑𝑝 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) = 𝐽)
7978, 77eqeltrd 2242 . . . . . 6 ((𝜑𝑝 ∈ (ℤ‘1)) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) ∈ 𝐴)
801adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝐴 ⊆ ℕ)
812adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
823adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
83 simprl 521 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝑝𝐴)
84 simprr 522 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → 𝑞𝐴)
8580, 81, 82, 83, 84nninfdclemcl 12377 . . . . . 6 ((𝜑 ∧ (𝑝𝐴𝑞𝐴)) → (𝑝(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑞) ∈ 𝐴)
8670, 79, 85seq3p1 10393 . . . . 5 (𝜑 → (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘(𝑈 + 1)) = ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))))
8768, 86syl5eq 2210 . . . 4 (𝜑 → (𝐹‘(𝑈 + 1)) = ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))))
885fveq1i 5486 . . . . . . 7 (𝐹𝑈) = (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)
8988eqcomi 2169 . . . . . 6 (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈) = (𝐹𝑈)
9089a1i 9 . . . . 5 (𝜑 → (seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈) = (𝐹𝑈))
91 eqidd 2166 . . . . . 6 (𝑖 = (𝑈 + 1) → 𝐽 = 𝐽)
9271, 91, 14, 76fvmptd3 5578 . . . . 5 (𝜑 → ((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1)) = 𝐽)
9390, 92oveq12d 5859 . . . 4 (𝜑 → ((seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))‘𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))((𝑖 ∈ ℕ ↦ 𝐽)‘(𝑈 + 1))) = ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽))
941, 76sseldd 3142 . . . . 5 (𝜑𝐽 ∈ ℕ)
95 eleq1w 2226 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (𝑥𝐴𝑠𝐴))
9695dcbid 828 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (DECID 𝑥𝐴DECID 𝑠𝐴))
972adantr 274 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
98 simpr 109 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℕ)
9996, 97, 98rspcdva 2834 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠𝐴)
10098nnzd 9308 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
101 eluzdc 9544 . . . . . . . . . . . 12 ((((𝐹𝑈) + 1) ∈ ℤ ∧ 𝑠 ∈ ℤ) → DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))
10212, 100, 101syl2an2r 585 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))
103 dcan2 924 . . . . . . . . . . 11 (DECID 𝑠𝐴 → (DECID 𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1)))))
10499, 102, 103sylc 62 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ) → DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
105 elin 3304 . . . . . . . . . . 11 (𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
106105dcbii 830 . . . . . . . . . 10 (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID (𝑠𝐴𝑠 ∈ (ℤ‘((𝐹𝑈) + 1))))
107104, 106sylibr 133 . . . . . . . . 9 ((𝜑𝑠 ∈ ℕ) → DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
108107ralrimiva 2538 . . . . . . . 8 (𝜑 → ∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
109 eleq1w 2226 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
110109dcbid 828 . . . . . . . . 9 (𝑠 = 𝑥 → (DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))))
111110cbvralv 2691 . . . . . . . 8 (∀𝑠 ∈ ℕ DECID 𝑠 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ↔ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
112108, 111sylib 121 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
113 nnmindc 11963 . . . . . . 7 (((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))) ∧ ∃𝑏 𝑏 ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1)))) → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
11425, 112, 62, 113syl3anc 1228 . . . . . 6 (𝜑 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
115114elin1d 3310 . . . . 5 (𝜑 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ 𝐴)
116 fvoveq1 5864 . . . . . . . 8 (𝑦 = (𝐹𝑈) → (ℤ‘(𝑦 + 1)) = (ℤ‘((𝐹𝑈) + 1)))
117116ineq2d 3322 . . . . . . 7 (𝑦 = (𝐹𝑈) → (𝐴 ∩ (ℤ‘(𝑦 + 1))) = (𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))))
118117infeq1d 6973 . . . . . 6 (𝑦 = (𝐹𝑈) → inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
119 eqidd 2166 . . . . . 6 (𝑧 = 𝐽 → inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
120 eqid 2165 . . . . . 6 (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )) = (𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))
121118, 119, 120ovmpog 5972 . . . . 5 (((𝐹𝑈) ∈ ℕ ∧ 𝐽 ∈ ℕ ∧ inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ) ∈ 𝐴) → ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
1229, 94, 115, 121syl3anc 1228 . . . 4 (𝜑 → ((𝐹𝑈)(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝐽) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
12387, 93, 1223eqtrd 2202 . . 3 (𝜑 → (𝐹‘(𝑈 + 1)) = inf((𝐴 ∩ (ℤ‘((𝐹𝑈) + 1))), ℝ, < ))
12467, 123breqtrrd 4009 . 2 (𝜑 → ((𝐹𝑈) + 1) ≤ (𝐹‘(𝑈 + 1)))
12510, 13, 17, 18, 124ltletrd 8317 1 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 824   = wceq 1343  wex 1480  wcel 2136  wral 2443  wrex 2444  cin 3114  wss 3115   class class class wbr 3981  cmpt 4042  cfv 5187  (class class class)co 5841  cmpo 5843  infcinf 6944  cr 7748  1c1 7750   + caddc 7752   < clt 7929  cle 7930  cn 8853  cz 9187  cuz 9462  seqcseq 10376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-fz 9941  df-fzo 10074  df-seqfrec 10377
This theorem is referenced by:  nninfdclemlt  12380
  Copyright terms: Public domain W3C validator