Proof of Theorem euxfr2dc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | euxfr2dc.2 | 
. . . . . . 7
⊢
∃*𝑦 𝑥 = 𝐴 | 
| 2 | 1 | moani 2115 | 
. . . . . 6
⊢
∃*𝑦(𝜑 ∧ 𝑥 = 𝐴) | 
| 3 |   | ancom 266 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐴) ↔ (𝑥 = 𝐴 ∧ 𝜑)) | 
| 4 | 3 | mobii 2082 | 
. . . . . 6
⊢
(∃*𝑦(𝜑 ∧ 𝑥 = 𝐴) ↔ ∃*𝑦(𝑥 = 𝐴 ∧ 𝜑)) | 
| 5 | 2, 4 | mpbi 145 | 
. . . . 5
⊢
∃*𝑦(𝑥 = 𝐴 ∧ 𝜑) | 
| 6 | 5 | ax-gen 1463 | 
. . . 4
⊢
∀𝑥∃*𝑦(𝑥 = 𝐴 ∧ 𝜑) | 
| 7 |   | excom 1678 | 
. . . . . 6
⊢
(∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑)) | 
| 8 | 7 | dcbii 841 | 
. . . . 5
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ DECID ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑)) | 
| 9 |   | 2euswapdc 2136 | 
. . . . 5
⊢
(DECID ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) → (∀𝑥∃*𝑦(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑)))) | 
| 10 | 8, 9 | sylbi 121 | 
. . . 4
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∀𝑥∃*𝑦(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑)))) | 
| 11 | 6, 10 | mpi 15 | 
. . 3
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | 
| 12 |   | moeq 2939 | 
. . . . . . 7
⊢
∃*𝑥 𝑥 = 𝐴 | 
| 13 | 12 | moani 2115 | 
. . . . . 6
⊢
∃*𝑥(𝜑 ∧ 𝑥 = 𝐴) | 
| 14 | 3 | mobii 2082 | 
. . . . . 6
⊢
(∃*𝑥(𝜑 ∧ 𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 = 𝐴 ∧ 𝜑)) | 
| 15 | 13, 14 | mpbi 145 | 
. . . . 5
⊢
∃*𝑥(𝑥 = 𝐴 ∧ 𝜑) | 
| 16 | 15 | ax-gen 1463 | 
. . . 4
⊢
∀𝑦∃*𝑥(𝑥 = 𝐴 ∧ 𝜑) | 
| 17 |   | 2euswapdc 2136 | 
. . . 4
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∀𝑦∃*𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑)))) | 
| 18 | 16, 17 | mpi 15 | 
. . 3
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑))) | 
| 19 | 11, 18 | impbid 129 | 
. 2
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | 
| 20 |   | euxfr2dc.1 | 
. . . 4
⊢ 𝐴 ∈ V | 
| 21 |   | biidd 172 | 
. . . 4
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜑)) | 
| 22 | 20, 21 | ceqsexv 2802 | 
. . 3
⊢
(∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜑) | 
| 23 | 22 | eubii 2054 | 
. 2
⊢
(∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦𝜑) | 
| 24 | 19, 23 | bitrdi 196 | 
1
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦𝜑)) |