ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euxfr2dc GIF version

Theorem euxfr2dc 2945
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfr2dc.1 𝐴 ∈ V
euxfr2dc.2 ∃*𝑦 𝑥 = 𝐴
Assertion
Ref Expression
euxfr2dc (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem euxfr2dc
StepHypRef Expression
1 euxfr2dc.2 . . . . . . 7 ∃*𝑦 𝑥 = 𝐴
21moani 2112 . . . . . 6 ∃*𝑦(𝜑𝑥 = 𝐴)
3 ancom 266 . . . . . . 7 ((𝜑𝑥 = 𝐴) ↔ (𝑥 = 𝐴𝜑))
43mobii 2079 . . . . . 6 (∃*𝑦(𝜑𝑥 = 𝐴) ↔ ∃*𝑦(𝑥 = 𝐴𝜑))
52, 4mpbi 145 . . . . 5 ∃*𝑦(𝑥 = 𝐴𝜑)
65ax-gen 1460 . . . 4 𝑥∃*𝑦(𝑥 = 𝐴𝜑)
7 excom 1675 . . . . . 6 (∃𝑦𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥𝑦(𝑥 = 𝐴𝜑))
87dcbii 841 . . . . 5 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) ↔ DECID𝑥𝑦(𝑥 = 𝐴𝜑))
9 2euswapdc 2133 . . . . 5 (DECID𝑥𝑦(𝑥 = 𝐴𝜑) → (∀𝑥∃*𝑦(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑))))
108, 9sylbi 121 . . . 4 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∀𝑥∃*𝑦(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑))))
116, 10mpi 15 . . 3 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑)))
12 moeq 2935 . . . . . . 7 ∃*𝑥 𝑥 = 𝐴
1312moani 2112 . . . . . 6 ∃*𝑥(𝜑𝑥 = 𝐴)
143mobii 2079 . . . . . 6 (∃*𝑥(𝜑𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 = 𝐴𝜑))
1513, 14mpbi 145 . . . . 5 ∃*𝑥(𝑥 = 𝐴𝜑)
1615ax-gen 1460 . . . 4 𝑦∃*𝑥(𝑥 = 𝐴𝜑)
17 2euswapdc 2133 . . . 4 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∀𝑦∃*𝑥(𝑥 = 𝐴𝜑) → (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑))))
1816, 17mpi 15 . . 3 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑)))
1911, 18impbid 129 . 2 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝑥(𝑥 = 𝐴𝜑)))
20 euxfr2dc.1 . . . 4 𝐴 ∈ V
21 biidd 172 . . . 4 (𝑥 = 𝐴 → (𝜑𝜑))
2220, 21ceqsexv 2799 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜑)
2322eubii 2051 . 2 (∃!𝑦𝑥(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
2419, 23bitrdi 196 1 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835  wal 1362   = wceq 1364  wex 1503  ∃!weu 2042  ∃*wmo 2043  wcel 2164  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  euxfrdc  2946
  Copyright terms: Public domain W3C validator