Proof of Theorem euxfr2dc
Step | Hyp | Ref
| Expression |
1 | | euxfr2dc.2 |
. . . . . . 7
⊢
∃*𝑦 𝑥 = 𝐴 |
2 | 1 | moani 2089 |
. . . . . 6
⊢
∃*𝑦(𝜑 ∧ 𝑥 = 𝐴) |
3 | | ancom 264 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐴) ↔ (𝑥 = 𝐴 ∧ 𝜑)) |
4 | 3 | mobii 2056 |
. . . . . 6
⊢
(∃*𝑦(𝜑 ∧ 𝑥 = 𝐴) ↔ ∃*𝑦(𝑥 = 𝐴 ∧ 𝜑)) |
5 | 2, 4 | mpbi 144 |
. . . . 5
⊢
∃*𝑦(𝑥 = 𝐴 ∧ 𝜑) |
6 | 5 | ax-gen 1442 |
. . . 4
⊢
∀𝑥∃*𝑦(𝑥 = 𝐴 ∧ 𝜑) |
7 | | excom 1657 |
. . . . . 6
⊢
(∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑)) |
8 | 7 | dcbii 835 |
. . . . 5
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ DECID ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑)) |
9 | | 2euswapdc 2110 |
. . . . 5
⊢
(DECID ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) → (∀𝑥∃*𝑦(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑)))) |
10 | 8, 9 | sylbi 120 |
. . . 4
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∀𝑥∃*𝑦(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑)))) |
11 | 6, 10 | mpi 15 |
. . 3
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
12 | | moeq 2905 |
. . . . . . 7
⊢
∃*𝑥 𝑥 = 𝐴 |
13 | 12 | moani 2089 |
. . . . . 6
⊢
∃*𝑥(𝜑 ∧ 𝑥 = 𝐴) |
14 | 3 | mobii 2056 |
. . . . . 6
⊢
(∃*𝑥(𝜑 ∧ 𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
15 | 13, 14 | mpbi 144 |
. . . . 5
⊢
∃*𝑥(𝑥 = 𝐴 ∧ 𝜑) |
16 | 15 | ax-gen 1442 |
. . . 4
⊢
∀𝑦∃*𝑥(𝑥 = 𝐴 ∧ 𝜑) |
17 | | 2euswapdc 2110 |
. . . 4
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∀𝑦∃*𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑)))) |
18 | 16, 17 | mpi 15 |
. . 3
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑))) |
19 | 11, 18 | impbid 128 |
. 2
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
20 | | euxfr2dc.1 |
. . . 4
⊢ 𝐴 ∈ V |
21 | | biidd 171 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜑)) |
22 | 20, 21 | ceqsexv 2769 |
. . 3
⊢
(∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜑) |
23 | 22 | eubii 2028 |
. 2
⊢
(∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
24 | 19, 23 | bitrdi 195 |
1
⊢
(DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦𝜑)) |