ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel GIF version

Theorem nfel 2356
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 𝑥𝐴
nfeq.2 𝑥𝐵
Assertion
Ref Expression
nfel 𝑥 𝐴𝐵

Proof of Theorem nfel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-clel 2200 . 2 (𝐴𝐵 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝐵))
2 nfcv 2347 . . . . 5 𝑥𝑧
3 nfnfc.1 . . . . 5 𝑥𝐴
42, 3nfeq 2355 . . . 4 𝑥 𝑧 = 𝐴
5 nfeq.2 . . . . 5 𝑥𝐵
65nfcri 2341 . . . 4 𝑥 𝑧𝐵
74, 6nfan 1587 . . 3 𝑥(𝑧 = 𝐴𝑧𝐵)
87nfex 1659 . 2 𝑥𝑧(𝑧 = 𝐴𝑧𝐵)
91, 8nfxfr 1496 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wnf 1482  wex 1514  wcel 2175  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-nfc 2336
This theorem is referenced by:  nfel1  2358  nfel2  2360  nfnel  2477  elabgf  2914  elrabf  2926  sbcel12g  3107  nfdisjv  4032  rabxfrd  4514  ffnfvf  5733  mptelixpg  6811  elabgft1  15578  elabgf2  15580  bj-rspgt  15586
  Copyright terms: Public domain W3C validator