Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfel | GIF version |
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2166 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nfcv 2312 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
3 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfeq 2320 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐴 |
5 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | nfcri 2306 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
7 | 4, 6 | nfan 1558 | . . 3 ⊢ Ⅎ𝑥(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
8 | 7 | nfex 1630 | . 2 ⊢ Ⅎ𝑥∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
9 | 1, 8 | nfxfr 1467 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 Ⅎwnf 1453 ∃wex 1485 ∈ wcel 2141 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 |
This theorem is referenced by: nfel1 2323 nfel2 2325 nfnel 2442 elabgf 2872 elrabf 2884 sbcel12g 3064 nfdisjv 3978 rabxfrd 4454 ffnfvf 5655 mptelixpg 6712 elabgft1 13813 elabgf2 13815 bj-rspgt 13821 |
Copyright terms: Public domain | W3C validator |