ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel GIF version

Theorem nfel 2381
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 𝑥𝐴
nfeq.2 𝑥𝐵
Assertion
Ref Expression
nfel 𝑥 𝐴𝐵

Proof of Theorem nfel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-clel 2225 . 2 (𝐴𝐵 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝐵))
2 nfcv 2372 . . . . 5 𝑥𝑧
3 nfnfc.1 . . . . 5 𝑥𝐴
42, 3nfeq 2380 . . . 4 𝑥 𝑧 = 𝐴
5 nfeq.2 . . . . 5 𝑥𝐵
65nfcri 2366 . . . 4 𝑥 𝑧𝐵
74, 6nfan 1611 . . 3 𝑥(𝑧 = 𝐴𝑧𝐵)
87nfex 1683 . 2 𝑥𝑧(𝑧 = 𝐴𝑧𝐵)
91, 8nfxfr 1520 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wnf 1506  wex 1538  wcel 2200  wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by:  nfel1  2383  nfel2  2385  nfnel  2502  elabgf  2945  elrabf  2957  sbcel12g  3139  nfdisjv  4070  rabxfrd  4559  ffnfvf  5793  mptelixpg  6879  elabgft1  16100  elabgf2  16102  bj-rspgt  16108
  Copyright terms: Public domain W3C validator