| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel | GIF version | ||
| Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfel | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clel 2192 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
| 2 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 3 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfeq 2347 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐴 |
| 5 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 7 | 4, 6 | nfan 1579 | . . 3 ⊢ Ⅎ𝑥(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 8 | 7 | nfex 1651 | . 2 ⊢ Ⅎ𝑥∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 9 | 1, 8 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 Ⅎwnf 1474 ∃wex 1506 ∈ wcel 2167 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: nfel1 2350 nfel2 2352 nfnel 2469 elabgf 2906 elrabf 2918 sbcel12g 3099 nfdisjv 4022 rabxfrd 4504 ffnfvf 5721 mptelixpg 6793 elabgft1 15424 elabgf2 15426 bj-rspgt 15432 |
| Copyright terms: Public domain | W3C validator |