ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel GIF version

Theorem nfel 2326
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 𝑥𝐴
nfeq.2 𝑥𝐵
Assertion
Ref Expression
nfel 𝑥 𝐴𝐵

Proof of Theorem nfel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-clel 2171 . 2 (𝐴𝐵 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝐵))
2 nfcv 2317 . . . . 5 𝑥𝑧
3 nfnfc.1 . . . . 5 𝑥𝐴
42, 3nfeq 2325 . . . 4 𝑥 𝑧 = 𝐴
5 nfeq.2 . . . . 5 𝑥𝐵
65nfcri 2311 . . . 4 𝑥 𝑧𝐵
74, 6nfan 1563 . . 3 𝑥(𝑧 = 𝐴𝑧𝐵)
87nfex 1635 . 2 𝑥𝑧(𝑧 = 𝐴𝑧𝐵)
91, 8nfxfr 1472 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wnf 1458  wex 1490  wcel 2146  wnfc 2304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-cleq 2168  df-clel 2171  df-nfc 2306
This theorem is referenced by:  nfel1  2328  nfel2  2330  nfnel  2447  elabgf  2877  elrabf  2889  sbcel12g  3070  nfdisjv  3987  rabxfrd  4463  ffnfvf  5667  mptelixpg  6724  elabgft1  14088  elabgf2  14090  bj-rspgt  14096
  Copyright terms: Public domain W3C validator