ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel GIF version

Theorem nfel 2262
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 𝑥𝐴
nfeq.2 𝑥𝐵
Assertion
Ref Expression
nfel 𝑥 𝐴𝐵

Proof of Theorem nfel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-clel 2109 . 2 (𝐴𝐵 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝐵))
2 nfcv 2253 . . . . 5 𝑥𝑧
3 nfnfc.1 . . . . 5 𝑥𝐴
42, 3nfeq 2261 . . . 4 𝑥 𝑧 = 𝐴
5 nfeq.2 . . . . 5 𝑥𝐵
65nfcri 2247 . . . 4 𝑥 𝑧𝐵
74, 6nfan 1525 . . 3 𝑥(𝑧 = 𝐴𝑧𝐵)
87nfex 1597 . 2 𝑥𝑧(𝑧 = 𝐴𝑧𝐵)
91, 8nfxfr 1431 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1312  wnf 1417  wex 1449  wcel 1461  wnfc 2240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-cleq 2106  df-clel 2109  df-nfc 2242
This theorem is referenced by:  nfel1  2264  nfel2  2266  nfnel  2382  elabgf  2794  elrabf  2805  sbcel12g  2982  nfdisjv  3882  rabxfrd  4348  ffnfvf  5531  mptelixpg  6580  elabgft1  12668  elabgf2  12670  bj-rspgt  12676
  Copyright terms: Public domain W3C validator