![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfel | GIF version |
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2189 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
3 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfeq 2344 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐴 |
5 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | nfcri 2330 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
7 | 4, 6 | nfan 1576 | . . 3 ⊢ Ⅎ𝑥(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
8 | 7 | nfex 1648 | . 2 ⊢ Ⅎ𝑥∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
9 | 1, 8 | nfxfr 1485 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 Ⅎwnf 1471 ∃wex 1503 ∈ wcel 2164 Ⅎwnfc 2323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 |
This theorem is referenced by: nfel1 2347 nfel2 2349 nfnel 2466 elabgf 2902 elrabf 2914 sbcel12g 3095 nfdisjv 4018 rabxfrd 4500 ffnfvf 5717 mptelixpg 6788 elabgft1 15270 elabgf2 15272 bj-rspgt 15278 |
Copyright terms: Public domain | W3C validator |