![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfel | GIF version |
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2109 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nfcv 2253 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
3 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfeq 2261 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐴 |
5 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | nfcri 2247 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
7 | 4, 6 | nfan 1525 | . . 3 ⊢ Ⅎ𝑥(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
8 | 7 | nfex 1597 | . 2 ⊢ Ⅎ𝑥∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
9 | 1, 8 | nfxfr 1431 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1312 Ⅎwnf 1417 ∃wex 1449 ∈ wcel 1461 Ⅎwnfc 2240 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-cleq 2106 df-clel 2109 df-nfc 2242 |
This theorem is referenced by: nfel1 2264 nfel2 2266 nfnel 2382 elabgf 2794 elrabf 2805 sbcel12g 2982 nfdisjv 3882 rabxfrd 4348 ffnfvf 5531 mptelixpg 6580 elabgft1 12668 elabgf2 12670 bj-rspgt 12676 |
Copyright terms: Public domain | W3C validator |