Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfel | GIF version |
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2171 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nfcv 2317 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
3 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfeq 2325 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐴 |
5 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | nfcri 2311 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
7 | 4, 6 | nfan 1563 | . . 3 ⊢ Ⅎ𝑥(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
8 | 7 | nfex 1635 | . 2 ⊢ Ⅎ𝑥∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
9 | 1, 8 | nfxfr 1472 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 Ⅎwnf 1458 ∃wex 1490 ∈ wcel 2146 Ⅎwnfc 2304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-cleq 2168 df-clel 2171 df-nfc 2306 |
This theorem is referenced by: nfel1 2328 nfel2 2330 nfnel 2447 elabgf 2877 elrabf 2889 sbcel12g 3070 nfdisjv 3987 rabxfrd 4463 ffnfvf 5667 mptelixpg 6724 elabgft1 14088 elabgf2 14090 bj-rspgt 14096 |
Copyright terms: Public domain | W3C validator |