| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel | GIF version | ||
| Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfel | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clel 2225 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
| 2 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 3 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfeq 2380 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐴 |
| 5 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | nfcri 2366 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 7 | 4, 6 | nfan 1611 | . . 3 ⊢ Ⅎ𝑥(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 8 | 7 | nfex 1683 | . 2 ⊢ Ⅎ𝑥∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 9 | 1, 8 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 Ⅎwnf 1506 ∃wex 1538 ∈ wcel 2200 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: nfel1 2383 nfel2 2385 nfnel 2502 elabgf 2945 elrabf 2957 sbcel12g 3139 nfdisjv 4070 rabxfrd 4559 ffnfvf 5793 mptelixpg 6879 elabgft1 16100 elabgf2 16102 bj-rspgt 16108 |
| Copyright terms: Public domain | W3C validator |