| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel | GIF version | ||
| Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfel | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clel 2202 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
| 2 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 3 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfeq 2357 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐴 |
| 5 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | nfcri 2343 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 7 | 4, 6 | nfan 1589 | . . 3 ⊢ Ⅎ𝑥(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 8 | 7 | nfex 1661 | . 2 ⊢ Ⅎ𝑥∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 9 | 1, 8 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 ∈ wcel 2177 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 |
| This theorem is referenced by: nfel1 2360 nfel2 2362 nfnel 2479 elabgf 2919 elrabf 2931 sbcel12g 3112 nfdisjv 4039 rabxfrd 4524 ffnfvf 5752 mptelixpg 6834 elabgft1 15853 elabgf2 15855 bj-rspgt 15861 |
| Copyright terms: Public domain | W3C validator |