Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfel | GIF version |
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2161 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
3 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfeq 2316 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐴 |
5 | nfeq.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | nfcri 2302 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
7 | 4, 6 | nfan 1553 | . . 3 ⊢ Ⅎ𝑥(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
8 | 7 | nfex 1625 | . 2 ⊢ Ⅎ𝑥∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝐵) |
9 | 1, 8 | nfxfr 1462 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 Ⅎwnf 1448 ∃wex 1480 ∈ wcel 2136 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 |
This theorem is referenced by: nfel1 2319 nfel2 2321 nfnel 2438 elabgf 2868 elrabf 2880 sbcel12g 3060 nfdisjv 3971 rabxfrd 4447 ffnfvf 5644 mptelixpg 6700 elabgft1 13659 elabgf2 13661 bj-rspgt 13667 |
Copyright terms: Public domain | W3C validator |