ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptpreima GIF version

Theorem mptpreima 5181
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptpreima (𝐹𝐶) = {𝑥𝐴𝐵𝐶}
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dmmpo.1 . . . . . 6 𝐹 = (𝑥𝐴𝐵)
2 df-mpt 4111 . . . . . 6 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
31, 2eqtri 2227 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
43cnveqi 4857 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
5 cnvopab 5089 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
64, 5eqtri 2227 . . 3 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
76imaeq1i 5024 . 2 (𝐹𝐶) = ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶)
8 df-ima 4692 . . 3 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶) = ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶)
9 resopab 5008 . . . . 5 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
109rneqi 4911 . . . 4 ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
11 ancom 266 . . . . . . . . 9 ((𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ ((𝑥𝐴𝑦 = 𝐵) ∧ 𝑦𝐶))
12 anass 401 . . . . . . . . 9 (((𝑥𝐴𝑦 = 𝐵) ∧ 𝑦𝐶) ↔ (𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
1311, 12bitri 184 . . . . . . . 8 ((𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ (𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
1413exbii 1629 . . . . . . 7 (∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
15 19.42v 1931 . . . . . . . 8 (∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝑦𝐶)))
16 df-clel 2202 . . . . . . . . . 10 (𝐵𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦𝐶))
1716bicomi 132 . . . . . . . . 9 (∃𝑦(𝑦 = 𝐵𝑦𝐶) ↔ 𝐵𝐶)
1817anbi2i 457 . . . . . . . 8 ((𝑥𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴𝐵𝐶))
1915, 18bitri 184 . . . . . . 7 (∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴𝐵𝐶))
2014, 19bitri 184 . . . . . 6 (∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ (𝑥𝐴𝐵𝐶))
2120abbii 2322 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥 ∣ (𝑥𝐴𝐵𝐶)}
22 rnopab 4930 . . . . 5 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥 ∣ ∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
23 df-rab 2494 . . . . 5 {𝑥𝐴𝐵𝐶} = {𝑥 ∣ (𝑥𝐴𝐵𝐶)}
2421, 22, 233eqtr4i 2237 . . . 4 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥𝐴𝐵𝐶}
2510, 24eqtri 2227 . . 3 ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = {𝑥𝐴𝐵𝐶}
268, 25eqtri 2227 . 2 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶) = {𝑥𝐴𝐵𝐶}
277, 26eqtri 2227 1 (𝐹𝐶) = {𝑥𝐴𝐵𝐶}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wex 1516  wcel 2177  {cab 2192  {crab 2489  {copab 4108  cmpt 4109  ccnv 4678  ran crn 4680  cres 4681  cima 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-mpt 4111  df-xp 4685  df-rel 4686  df-cnv 4687  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692
This theorem is referenced by:  mptiniseg  5182  dmmpt  5183  fmpt  5737  f1oresrab  5752  suppssfv  6161  suppssov1  6162  infrenegsupex  9722  infxrnegsupex  11618  eqglact  13605  fczpsrbag  14477  txcnmpt  14789  txdis1cn  14794  imasnopn  14815
  Copyright terms: Public domain W3C validator