ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptpreima GIF version

Theorem mptpreima 5118
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptpreima (𝐹𝐶) = {𝑥𝐴𝐵𝐶}
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dmmpo.1 . . . . . 6 𝐹 = (𝑥𝐴𝐵)
2 df-mpt 4063 . . . . . 6 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
31, 2eqtri 2198 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
43cnveqi 4798 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
5 cnvopab 5026 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
64, 5eqtri 2198 . . 3 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
76imaeq1i 4963 . 2 (𝐹𝐶) = ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶)
8 df-ima 4636 . . 3 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶) = ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶)
9 resopab 4947 . . . . 5 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
109rneqi 4851 . . . 4 ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
11 ancom 266 . . . . . . . . 9 ((𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ ((𝑥𝐴𝑦 = 𝐵) ∧ 𝑦𝐶))
12 anass 401 . . . . . . . . 9 (((𝑥𝐴𝑦 = 𝐵) ∧ 𝑦𝐶) ↔ (𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
1311, 12bitri 184 . . . . . . . 8 ((𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ (𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
1413exbii 1605 . . . . . . 7 (∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
15 19.42v 1906 . . . . . . . 8 (∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝑦𝐶)))
16 df-clel 2173 . . . . . . . . . 10 (𝐵𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦𝐶))
1716bicomi 132 . . . . . . . . 9 (∃𝑦(𝑦 = 𝐵𝑦𝐶) ↔ 𝐵𝐶)
1817anbi2i 457 . . . . . . . 8 ((𝑥𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴𝐵𝐶))
1915, 18bitri 184 . . . . . . 7 (∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴𝐵𝐶))
2014, 19bitri 184 . . . . . 6 (∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ (𝑥𝐴𝐵𝐶))
2120abbii 2293 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥 ∣ (𝑥𝐴𝐵𝐶)}
22 rnopab 4870 . . . . 5 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥 ∣ ∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
23 df-rab 2464 . . . . 5 {𝑥𝐴𝐵𝐶} = {𝑥 ∣ (𝑥𝐴𝐵𝐶)}
2421, 22, 233eqtr4i 2208 . . . 4 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥𝐴𝐵𝐶}
2510, 24eqtri 2198 . . 3 ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = {𝑥𝐴𝐵𝐶}
268, 25eqtri 2198 . 2 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶) = {𝑥𝐴𝐵𝐶}
277, 26eqtri 2198 1 (𝐹𝐶) = {𝑥𝐴𝐵𝐶}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wex 1492  wcel 2148  {cab 2163  {crab 2459  {copab 4060  cmpt 4061  ccnv 4622  ran crn 4624  cres 4625  cima 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-mpt 4063  df-xp 4629  df-rel 4630  df-cnv 4631  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636
This theorem is referenced by:  mptiniseg  5119  dmmpt  5120  fmpt  5662  f1oresrab  5677  suppssfv  6073  suppssov1  6074  infrenegsupex  9583  infxrnegsupex  11255  txcnmpt  13440  txdis1cn  13445  imasnopn  13466
  Copyright terms: Public domain W3C validator