ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-dju GIF version

Definition df-dju 7037
Description: Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.)
Assertion
Ref Expression
df-dju (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))

Detailed syntax breakdown of Definition df-dju
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cdju 7036 . 2 class (𝐴𝐵)
4 c0 3423 . . . . 5 class
54csn 3593 . . . 4 class {∅}
65, 1cxp 4625 . . 3 class ({∅} × 𝐴)
7 c1o 6410 . . . . 5 class 1o
87csn 3593 . . . 4 class {1o}
98, 2cxp 4625 . . 3 class ({1o} × 𝐵)
106, 9cun 3128 . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵))
113, 10wceq 1353 1 wff (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
Colors of variables: wff set class
This definition is referenced by:  djueq12  7038  nfdju  7041  djuex  7042  djuexb  7043  djulclr  7048  djurclr  7049  djulcl  7050  djurcl  7051  djulclb  7054  djuunr  7065  eldju2ndl  7071  eldju2ndr  7072  xp2dju  7214  djucomen  7215  djuassen  7216  xpdjuen  7217  djulclALT  14556  djurclALT  14557
  Copyright terms: Public domain W3C validator