Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-dju | GIF version |
Description: Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
Ref | Expression |
---|---|
df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cdju 7014 | . 2 class (𝐴 ⊔ 𝐵) |
4 | c0 3414 | . . . . 5 class ∅ | |
5 | 4 | csn 3583 | . . . 4 class {∅} |
6 | 5, 1 | cxp 4609 | . . 3 class ({∅} × 𝐴) |
7 | c1o 6388 | . . . . 5 class 1o | |
8 | 7 | csn 3583 | . . . 4 class {1o} |
9 | 8, 2 | cxp 4609 | . . 3 class ({1o} × 𝐵) |
10 | 6, 9 | cun 3119 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
11 | 3, 10 | wceq 1348 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: djueq12 7016 nfdju 7019 djuex 7020 djuexb 7021 djulclr 7026 djurclr 7027 djulcl 7028 djurcl 7029 djulclb 7032 djuunr 7043 eldju2ndl 7049 eldju2ndr 7050 xp2dju 7192 djucomen 7193 djuassen 7194 xpdjuen 7195 djulclALT 13836 djurclALT 13837 |
Copyright terms: Public domain | W3C validator |