![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-dju | GIF version |
Description: Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
Ref | Expression |
---|---|
df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cdju 7036 | . 2 class (𝐴 ⊔ 𝐵) |
4 | c0 3423 | . . . . 5 class ∅ | |
5 | 4 | csn 3593 | . . . 4 class {∅} |
6 | 5, 1 | cxp 4625 | . . 3 class ({∅} × 𝐴) |
7 | c1o 6410 | . . . . 5 class 1o | |
8 | 7 | csn 3593 | . . . 4 class {1o} |
9 | 8, 2 | cxp 4625 | . . 3 class ({1o} × 𝐵) |
10 | 6, 9 | cun 3128 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
11 | 3, 10 | wceq 1353 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: djueq12 7038 nfdju 7041 djuex 7042 djuexb 7043 djulclr 7048 djurclr 7049 djulcl 7050 djurcl 7051 djulclb 7054 djuunr 7065 eldju2ndl 7071 eldju2ndr 7072 xp2dju 7214 djucomen 7215 djuassen 7216 xpdjuen 7217 djulclALT 14556 djurclALT 14557 |
Copyright terms: Public domain | W3C validator |