![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-dju | GIF version |
Description: Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
Ref | Expression |
---|---|
df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cdju 7039 | . 2 class (𝐴 ⊔ 𝐵) |
4 | c0 3424 | . . . . 5 class ∅ | |
5 | 4 | csn 3594 | . . . 4 class {∅} |
6 | 5, 1 | cxp 4626 | . . 3 class ({∅} × 𝐴) |
7 | c1o 6413 | . . . . 5 class 1o | |
8 | 7 | csn 3594 | . . . 4 class {1o} |
9 | 8, 2 | cxp 4626 | . . 3 class ({1o} × 𝐵) |
10 | 6, 9 | cun 3129 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
11 | 3, 10 | wceq 1353 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: djueq12 7041 nfdju 7044 djuex 7045 djuexb 7046 djulclr 7051 djurclr 7052 djulcl 7053 djurcl 7054 djulclb 7057 djuunr 7068 eldju2ndl 7074 eldju2ndr 7075 xp2dju 7217 djucomen 7218 djuassen 7219 xpdjuen 7220 djulclALT 14714 djurclALT 14715 |
Copyright terms: Public domain | W3C validator |