ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djucomen GIF version

Theorem djucomen 7217
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djucomen ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))

Proof of Theorem djucomen
StepHypRef Expression
1 1oex 6427 . . . 4 1o ∈ V
2 xpsnen2g 6831 . . . 4 ((1o ∈ V ∧ 𝐴𝑉) → ({1o} × 𝐴) ≈ 𝐴)
31, 2mpan 424 . . 3 (𝐴𝑉 → ({1o} × 𝐴) ≈ 𝐴)
4 0ex 4132 . . . 4 ∅ ∈ V
5 xpsnen2g 6831 . . . 4 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
64, 5mpan 424 . . 3 (𝐵𝑊 → ({∅} × 𝐵) ≈ 𝐵)
7 ensym 6783 . . . 4 (({1o} × 𝐴) ≈ 𝐴𝐴 ≈ ({1o} × 𝐴))
8 ensym 6783 . . . 4 (({∅} × 𝐵) ≈ 𝐵𝐵 ≈ ({∅} × 𝐵))
9 incom 3329 . . . . . 6 (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = (({∅} × 𝐵) ∩ ({1o} × 𝐴))
10 xp01disjl 6437 . . . . . 6 (({∅} × 𝐵) ∩ ({1o} × 𝐴)) = ∅
119, 10eqtri 2198 . . . . 5 (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅
12 djuenun 7213 . . . . 5 ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵) ∧ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
1311, 12mp3an3 1326 . . . 4 ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵)) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
147, 8, 13syl2an 289 . . 3 ((({1o} × 𝐴) ≈ 𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
153, 6, 14syl2an 289 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
16 df-dju 7039 . . 3 (𝐵𝐴) = (({∅} × 𝐵) ∪ ({1o} × 𝐴))
1716equncomi 3283 . 2 (𝐵𝐴) = (({1o} × 𝐴) ∪ ({∅} × 𝐵))
1815, 17breqtrrdi 4047 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2739  cun 3129  cin 3130  c0 3424  {csn 3594   class class class wbr 4005   × cxp 4626  1oc1o 6412  cen 6740  cdju 7038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-er 6537  df-en 6743  df-dju 7039  df-inl 7048  df-inr 7049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator