ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djucomen GIF version

Theorem djucomen 7278
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djucomen ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))

Proof of Theorem djucomen
StepHypRef Expression
1 1oex 6479 . . . 4 1o ∈ V
2 xpsnen2g 6885 . . . 4 ((1o ∈ V ∧ 𝐴𝑉) → ({1o} × 𝐴) ≈ 𝐴)
31, 2mpan 424 . . 3 (𝐴𝑉 → ({1o} × 𝐴) ≈ 𝐴)
4 0ex 4157 . . . 4 ∅ ∈ V
5 xpsnen2g 6885 . . . 4 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
64, 5mpan 424 . . 3 (𝐵𝑊 → ({∅} × 𝐵) ≈ 𝐵)
7 ensym 6837 . . . 4 (({1o} × 𝐴) ≈ 𝐴𝐴 ≈ ({1o} × 𝐴))
8 ensym 6837 . . . 4 (({∅} × 𝐵) ≈ 𝐵𝐵 ≈ ({∅} × 𝐵))
9 incom 3352 . . . . . 6 (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = (({∅} × 𝐵) ∩ ({1o} × 𝐴))
10 xp01disjl 6489 . . . . . 6 (({∅} × 𝐵) ∩ ({1o} × 𝐴)) = ∅
119, 10eqtri 2214 . . . . 5 (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅
12 djuenun 7274 . . . . 5 ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵) ∧ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
1311, 12mp3an3 1337 . . . 4 ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵)) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
147, 8, 13syl2an 289 . . 3 ((({1o} × 𝐴) ≈ 𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
153, 6, 14syl2an 289 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
16 df-dju 7099 . . 3 (𝐵𝐴) = (({∅} × 𝐵) ∪ ({1o} × 𝐴))
1716equncomi 3306 . 2 (𝐵𝐴) = (({1o} × 𝐴) ∪ ({∅} × 𝐵))
1815, 17breqtrrdi 4072 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cun 3152  cin 3153  c0 3447  {csn 3619   class class class wbr 4030   × cxp 4658  1oc1o 6464  cen 6794  cdju 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-er 6589  df-en 6797  df-dju 7099  df-inl 7108  df-inr 7109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator