ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djucomen GIF version

Theorem djucomen 7172
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djucomen ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))

Proof of Theorem djucomen
StepHypRef Expression
1 1oex 6392 . . . 4 1o ∈ V
2 xpsnen2g 6795 . . . 4 ((1o ∈ V ∧ 𝐴𝑉) → ({1o} × 𝐴) ≈ 𝐴)
31, 2mpan 421 . . 3 (𝐴𝑉 → ({1o} × 𝐴) ≈ 𝐴)
4 0ex 4109 . . . 4 ∅ ∈ V
5 xpsnen2g 6795 . . . 4 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
64, 5mpan 421 . . 3 (𝐵𝑊 → ({∅} × 𝐵) ≈ 𝐵)
7 ensym 6747 . . . 4 (({1o} × 𝐴) ≈ 𝐴𝐴 ≈ ({1o} × 𝐴))
8 ensym 6747 . . . 4 (({∅} × 𝐵) ≈ 𝐵𝐵 ≈ ({∅} × 𝐵))
9 incom 3314 . . . . . 6 (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = (({∅} × 𝐵) ∩ ({1o} × 𝐴))
10 xp01disjl 6402 . . . . . 6 (({∅} × 𝐵) ∩ ({1o} × 𝐴)) = ∅
119, 10eqtri 2186 . . . . 5 (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅
12 djuenun 7168 . . . . 5 ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵) ∧ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
1311, 12mp3an3 1316 . . . 4 ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵)) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
147, 8, 13syl2an 287 . . 3 ((({1o} × 𝐴) ≈ 𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
153, 6, 14syl2an 287 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
16 df-dju 7003 . . 3 (𝐵𝐴) = (({∅} × 𝐵) ∪ ({1o} × 𝐴))
1716equncomi 3268 . 2 (𝐵𝐴) = (({1o} × 𝐴) ∪ ({∅} × 𝐵))
1815, 17breqtrrdi 4024 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  cun 3114  cin 3115  c0 3409  {csn 3576   class class class wbr 3982   × cxp 4602  1oc1o 6377  cen 6704  cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-er 6501  df-en 6707  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator