ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djucomen GIF version

Theorem djucomen 7276
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djucomen ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))

Proof of Theorem djucomen
StepHypRef Expression
1 1oex 6477 . . . 4 1o ∈ V
2 xpsnen2g 6883 . . . 4 ((1o ∈ V ∧ 𝐴𝑉) → ({1o} × 𝐴) ≈ 𝐴)
31, 2mpan 424 . . 3 (𝐴𝑉 → ({1o} × 𝐴) ≈ 𝐴)
4 0ex 4156 . . . 4 ∅ ∈ V
5 xpsnen2g 6883 . . . 4 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
64, 5mpan 424 . . 3 (𝐵𝑊 → ({∅} × 𝐵) ≈ 𝐵)
7 ensym 6835 . . . 4 (({1o} × 𝐴) ≈ 𝐴𝐴 ≈ ({1o} × 𝐴))
8 ensym 6835 . . . 4 (({∅} × 𝐵) ≈ 𝐵𝐵 ≈ ({∅} × 𝐵))
9 incom 3351 . . . . . 6 (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = (({∅} × 𝐵) ∩ ({1o} × 𝐴))
10 xp01disjl 6487 . . . . . 6 (({∅} × 𝐵) ∩ ({1o} × 𝐴)) = ∅
119, 10eqtri 2214 . . . . 5 (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅
12 djuenun 7272 . . . . 5 ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵) ∧ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
1311, 12mp3an3 1337 . . . 4 ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵)) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
147, 8, 13syl2an 289 . . 3 ((({1o} × 𝐴) ≈ 𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
153, 6, 14syl2an 289 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
16 df-dju 7097 . . 3 (𝐵𝐴) = (({∅} × 𝐵) ∪ ({1o} × 𝐴))
1716equncomi 3305 . 2 (𝐵𝐴) = (({1o} × 𝐴) ∪ ({∅} × 𝐵))
1815, 17breqtrrdi 4071 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cun 3151  cin 3152  c0 3446  {csn 3618   class class class wbr 4029   × cxp 4657  1oc1o 6462  cen 6792  cdju 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-er 6587  df-en 6795  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator