Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuex | GIF version |
Description: The disjoint union of sets is a set. See also the more precise djuss 7047. (Contributed by AV, 28-Jun-2022.) |
Ref | Expression |
---|---|
djuex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 7015 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | p0ex 4174 | . . . . . . 7 ⊢ {∅} ∈ V | |
3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → {∅} ∈ V) |
4 | 3 | anim1i 338 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ({∅} ∈ V ∧ 𝐴 ∈ 𝑉)) |
5 | 4 | ancoms 266 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} ∈ V ∧ 𝐴 ∈ 𝑉)) |
6 | xpexg 4725 | . . . 4 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ∈ V) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} × 𝐴) ∈ V) |
8 | 1on 6402 | . . . . . . 7 ⊢ 1o ∈ On | |
9 | 8 | elexi 2742 | . . . . . 6 ⊢ 1o ∈ V |
10 | 9 | snex 4171 | . . . . 5 ⊢ {1o} ∈ V |
11 | 10 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
12 | xpexg 4725 | . . . 4 ⊢ (({1o} ∈ V ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) | |
13 | 11, 12 | sylan 281 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) |
14 | unexg 4428 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
15 | 7, 13, 14 | syl2anc 409 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
16 | 1, 15 | eqeltrid 2257 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 ∅c0 3414 {csn 3583 Oncon0 4348 × cxp 4609 1oc1o 6388 ⊔ cdju 7014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-opab 4051 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-1o 6395 df-dju 7015 |
This theorem is referenced by: djuexb 7021 updjud 7059 djudom 7070 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 djudoml 7196 djudomr 7197 exmidsbthrlem 14054 sbthom 14058 |
Copyright terms: Public domain | W3C validator |