Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuex | GIF version |
Description: The disjoint union of sets is a set. See also the more precise djuss 7000. (Contributed by AV, 28-Jun-2022.) |
Ref | Expression |
---|---|
djuex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 6968 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | p0ex 4144 | . . . . . . 7 ⊢ {∅} ∈ V | |
3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → {∅} ∈ V) |
4 | 3 | anim1i 338 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ({∅} ∈ V ∧ 𝐴 ∈ 𝑉)) |
5 | 4 | ancoms 266 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} ∈ V ∧ 𝐴 ∈ 𝑉)) |
6 | xpexg 4693 | . . . 4 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ∈ V) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} × 𝐴) ∈ V) |
8 | 1on 6360 | . . . . . . 7 ⊢ 1o ∈ On | |
9 | 8 | elexi 2721 | . . . . . 6 ⊢ 1o ∈ V |
10 | 9 | snex 4141 | . . . . 5 ⊢ {1o} ∈ V |
11 | 10 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
12 | xpexg 4693 | . . . 4 ⊢ (({1o} ∈ V ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) | |
13 | 11, 12 | sylan 281 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) |
14 | unexg 4397 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
15 | 7, 13, 14 | syl2anc 409 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
16 | 1, 15 | eqeltrid 2241 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2125 Vcvv 2709 ∪ cun 3096 ∅c0 3390 {csn 3556 Oncon0 4318 × cxp 4577 1oc1o 6346 ⊔ cdju 6967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-opab 4022 df-tr 4059 df-iord 4321 df-on 4323 df-suc 4326 df-xp 4585 df-1o 6353 df-dju 6968 |
This theorem is referenced by: djuexb 6974 updjud 7012 djudom 7023 exmidfodomrlemr 7116 exmidfodomrlemrALT 7117 djudoml 7133 djudomr 7134 exmidsbthrlem 13542 sbthom 13546 |
Copyright terms: Public domain | W3C validator |