ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuex GIF version

Theorem djuex 6894
Description: The disjoint union of sets is a set. See also the more precise djuss 6921. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
djuex ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem djuex
StepHypRef Expression
1 df-dju 6889 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 p0ex 4080 . . . . . . 7 {∅} ∈ V
32a1i 9 . . . . . 6 (𝐵𝑊 → {∅} ∈ V)
43anim1i 336 . . . . 5 ((𝐵𝑊𝐴𝑉) → ({∅} ∈ V ∧ 𝐴𝑉))
54ancoms 266 . . . 4 ((𝐴𝑉𝐵𝑊) → ({∅} ∈ V ∧ 𝐴𝑉))
6 xpexg 4621 . . . 4 (({∅} ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ∈ V)
75, 6syl 14 . . 3 ((𝐴𝑉𝐵𝑊) → ({∅} × 𝐴) ∈ V)
8 1on 6286 . . . . . . 7 1o ∈ On
98elexi 2670 . . . . . 6 1o ∈ V
109snex 4077 . . . . 5 {1o} ∈ V
1110a1i 9 . . . 4 (𝐴𝑉 → {1o} ∈ V)
12 xpexg 4621 . . . 4 (({1o} ∈ V ∧ 𝐵𝑊) → ({1o} × 𝐵) ∈ V)
1311, 12sylan 279 . . 3 ((𝐴𝑉𝐵𝑊) → ({1o} × 𝐵) ∈ V)
14 unexg 4332 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
157, 13, 14syl2anc 406 . 2 ((𝐴𝑉𝐵𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
161, 15eqeltrid 2202 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1463  Vcvv 2658  cun 3037  c0 3331  {csn 3495  Oncon0 4253   × cxp 4505  1oc1o 6272  cdju 6888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-opab 3958  df-tr 3995  df-iord 4256  df-on 4258  df-suc 4261  df-xp 4513  df-1o 6279  df-dju 6889
This theorem is referenced by:  djuexb  6895  updjud  6933  djudom  6944  exmidfodomrlemr  7022  exmidfodomrlemrALT  7023  djudoml  7039  djudomr  7040  exmidsbthrlem  13040  sbthom  13044
  Copyright terms: Public domain W3C validator