| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuex | GIF version | ||
| Description: The disjoint union of sets is a set. See also the more precise djuss 7145. (Contributed by AV, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 7113 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 2 | p0ex 4222 | . . . . . . 7 ⊢ {∅} ∈ V | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → {∅} ∈ V) |
| 4 | 3 | anim1i 340 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ({∅} ∈ V ∧ 𝐴 ∈ 𝑉)) |
| 5 | 4 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} ∈ V ∧ 𝐴 ∈ 𝑉)) |
| 6 | xpexg 4778 | . . . 4 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ∈ V) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} × 𝐴) ∈ V) |
| 8 | 1on 6490 | . . . . . . 7 ⊢ 1o ∈ On | |
| 9 | 8 | elexi 2775 | . . . . . 6 ⊢ 1o ∈ V |
| 10 | 9 | snex 4219 | . . . . 5 ⊢ {1o} ∈ V |
| 11 | 10 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
| 12 | xpexg 4778 | . . . 4 ⊢ (({1o} ∈ V ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) | |
| 13 | 11, 12 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) |
| 14 | unexg 4479 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
| 15 | 7, 13, 14 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
| 16 | 1, 15 | eqeltrid 2283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ∅c0 3451 {csn 3623 Oncon0 4399 × cxp 4662 1oc1o 6476 ⊔ cdju 7112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-opab 4096 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-1o 6483 df-dju 7113 |
| This theorem is referenced by: djuexb 7119 updjud 7157 djudom 7168 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 djudoml 7302 djudomr 7303 exmidsbthrlem 15753 sbthom 15757 |
| Copyright terms: Public domain | W3C validator |