| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuex | GIF version | ||
| Description: The disjoint union of sets is a set. See also the more precise djuss 7174. (Contributed by AV, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 7142 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 2 | p0ex 4233 | . . . . . . 7 ⊢ {∅} ∈ V | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → {∅} ∈ V) |
| 4 | 3 | anim1i 340 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ({∅} ∈ V ∧ 𝐴 ∈ 𝑉)) |
| 5 | 4 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} ∈ V ∧ 𝐴 ∈ 𝑉)) |
| 6 | xpexg 4790 | . . . 4 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ∈ V) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} × 𝐴) ∈ V) |
| 8 | 1on 6511 | . . . . . . 7 ⊢ 1o ∈ On | |
| 9 | 8 | elexi 2784 | . . . . . 6 ⊢ 1o ∈ V |
| 10 | 9 | snex 4230 | . . . . 5 ⊢ {1o} ∈ V |
| 11 | 10 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
| 12 | xpexg 4790 | . . . 4 ⊢ (({1o} ∈ V ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) | |
| 13 | 11, 12 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) |
| 14 | unexg 4491 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
| 15 | 7, 13, 14 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
| 16 | 1, 15 | eqeltrid 2292 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 Vcvv 2772 ∪ cun 3164 ∅c0 3460 {csn 3633 Oncon0 4411 × cxp 4674 1oc1o 6497 ⊔ cdju 7141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-opab 4107 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-xp 4682 df-1o 6504 df-dju 7142 |
| This theorem is referenced by: djuexb 7148 updjud 7186 djudom 7197 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 djudoml 7333 djudomr 7334 exmidsbthrlem 15998 sbthom 16002 |
| Copyright terms: Public domain | W3C validator |