![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djuex | GIF version |
Description: The disjoint union of sets is a set. See also the more precise djuss 7129. (Contributed by AV, 28-Jun-2022.) |
Ref | Expression |
---|---|
djuex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 7097 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | p0ex 4217 | . . . . . . 7 ⊢ {∅} ∈ V | |
3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → {∅} ∈ V) |
4 | 3 | anim1i 340 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ({∅} ∈ V ∧ 𝐴 ∈ 𝑉)) |
5 | 4 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} ∈ V ∧ 𝐴 ∈ 𝑉)) |
6 | xpexg 4773 | . . . 4 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ∈ V) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅} × 𝐴) ∈ V) |
8 | 1on 6476 | . . . . . . 7 ⊢ 1o ∈ On | |
9 | 8 | elexi 2772 | . . . . . 6 ⊢ 1o ∈ V |
10 | 9 | snex 4214 | . . . . 5 ⊢ {1o} ∈ V |
11 | 10 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
12 | xpexg 4773 | . . . 4 ⊢ (({1o} ∈ V ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) | |
13 | 11, 12 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ∈ V) |
14 | unexg 4474 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
15 | 7, 13, 14 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
16 | 1, 15 | eqeltrid 2280 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 ∅c0 3446 {csn 3618 Oncon0 4394 × cxp 4657 1oc1o 6462 ⊔ cdju 7096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-opab 4091 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-1o 6469 df-dju 7097 |
This theorem is referenced by: djuexb 7103 updjud 7141 djudom 7152 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 djudoml 7279 djudomr 7280 exmidsbthrlem 15512 sbthom 15516 |
Copyright terms: Public domain | W3C validator |