ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuassen GIF version

Theorem djuassen 7360
Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuassen ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))

Proof of Theorem djuassen
StepHypRef Expression
1 0ex 4187 . . . . . 6 ∅ ∈ V
2 simp1 1000 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
3 xpsnen2g 6949 . . . . . 6 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
41, 2, 3sylancr 414 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐴) ≈ 𝐴)
54ensymd 6898 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴 ≈ ({∅} × 𝐴))
6 1oex 6533 . . . . . . 7 1o ∈ V
71snex 4245 . . . . . . . 8 {∅} ∈ V
8 simp2 1001 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
9 xpexg 4807 . . . . . . . 8 (({∅} ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ∈ V)
107, 8, 9sylancr 414 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ∈ V)
11 xpsnen2g 6949 . . . . . . 7 ((1o ∈ V ∧ ({∅} × 𝐵) ∈ V) → ({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵))
126, 10, 11sylancr 414 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵))
13 xpsnen2g 6949 . . . . . . 7 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
141, 8, 13sylancr 414 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
15 entr 6899 . . . . . 6 ((({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵) ∧ ({∅} × 𝐵) ≈ 𝐵) → ({1o} × ({∅} × 𝐵)) ≈ 𝐵)
1612, 14, 15syl2anc 411 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({∅} × 𝐵)) ≈ 𝐵)
1716ensymd 6898 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵 ≈ ({1o} × ({∅} × 𝐵)))
18 xp01disjl 6543 . . . . 5 (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅
1918a1i 9 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅)
20 djuenun 7355 . . . 4 ((𝐴 ≈ ({∅} × 𝐴) ∧ 𝐵 ≈ ({1o} × ({∅} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅) → (𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))))
215, 17, 19, 20syl3anc 1250 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))))
226snex 4245 . . . . . . 7 {1o} ∈ V
23 simp3 1002 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
24 xpexg 4807 . . . . . . 7 (({1o} ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ∈ V)
2522, 23, 24sylancr 414 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ∈ V)
26 xpsnen2g 6949 . . . . . 6 ((1o ∈ V ∧ ({1o} × 𝐶) ∈ V) → ({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶))
276, 25, 26sylancr 414 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶))
28 xpsnen2g 6949 . . . . . 6 ((1o ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
296, 23, 28sylancr 414 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
30 entr 6899 . . . . 5 ((({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶) ∧ ({1o} × 𝐶) ≈ 𝐶) → ({1o} × ({1o} × 𝐶)) ≈ 𝐶)
3127, 29, 30syl2anc 411 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({1o} × 𝐶)) ≈ 𝐶)
3231ensymd 6898 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶 ≈ ({1o} × ({1o} × 𝐶)))
33 indir 3430 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶))))
34 xp01disjl 6543 . . . . . . 7 (({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) = ∅
35 xp01disjl 6543 . . . . . . . . 9 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
3635xpeq2i 4714 . . . . . . . 8 ({1o} × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = ({1o} × ∅)
37 xpindi 4831 . . . . . . . 8 ({1o} × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))
38 xp0 5121 . . . . . . . 8 ({1o} × ∅) = ∅
3936, 37, 383eqtr3i 2236 . . . . . . 7 (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶))) = ∅
4034, 39uneq12i 3333 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))) = (∅ ∪ ∅)
41 un0 3502 . . . . . 6 (∅ ∪ ∅) = ∅
4240, 41eqtri 2228 . . . . 5 ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))) = ∅
4333, 42eqtri 2228 . . . 4 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅
4443a1i 9 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅)
45 djuenun 7355 . . 3 (((𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∧ 𝐶 ≈ ({1o} × ({1o} × 𝐶)) ∧ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅) → ((𝐴𝐵) ⊔ 𝐶) ≈ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))))
4621, 32, 44, 45syl3anc 1250 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))))
47 df-dju 7166 . . . . . 6 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
4847xpeq2i 4714 . . . . 5 ({1o} × (𝐵𝐶)) = ({1o} × (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
49 xpundi 4749 . . . . 5 ({1o} × (({∅} × 𝐵) ∪ ({1o} × 𝐶))) = (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶)))
5048, 49eqtri 2228 . . . 4 ({1o} × (𝐵𝐶)) = (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶)))
5150uneq2i 3332 . . 3 (({∅} × 𝐴) ∪ ({1o} × (𝐵𝐶))) = (({∅} × 𝐴) ∪ (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶))))
52 df-dju 7166 . . 3 (𝐴 ⊔ (𝐵𝐶)) = (({∅} × 𝐴) ∪ ({1o} × (𝐵𝐶)))
53 unass 3338 . . 3 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))) = (({∅} × 𝐴) ∪ (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶))))
5451, 52, 533eqtr4i 2238 . 2 (𝐴 ⊔ (𝐵𝐶)) = ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶)))
5546, 54breqtrrdi 4101 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981   = wceq 1373  wcel 2178  Vcvv 2776  cun 3172  cin 3173  c0 3468  {csn 3643   class class class wbr 4059   × cxp 4691  1oc1o 6518  cen 6848  cdju 7165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-er 6643  df-en 6851  df-dju 7166  df-inl 7175  df-inr 7176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator