ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuassen GIF version

Theorem djuassen 7284
Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuassen ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))

Proof of Theorem djuassen
StepHypRef Expression
1 0ex 4160 . . . . . 6 ∅ ∈ V
2 simp1 999 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
3 xpsnen2g 6888 . . . . . 6 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
41, 2, 3sylancr 414 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐴) ≈ 𝐴)
54ensymd 6842 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴 ≈ ({∅} × 𝐴))
6 1oex 6482 . . . . . . 7 1o ∈ V
71snex 4218 . . . . . . . 8 {∅} ∈ V
8 simp2 1000 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
9 xpexg 4777 . . . . . . . 8 (({∅} ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ∈ V)
107, 8, 9sylancr 414 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ∈ V)
11 xpsnen2g 6888 . . . . . . 7 ((1o ∈ V ∧ ({∅} × 𝐵) ∈ V) → ({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵))
126, 10, 11sylancr 414 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵))
13 xpsnen2g 6888 . . . . . . 7 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
141, 8, 13sylancr 414 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
15 entr 6843 . . . . . 6 ((({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵) ∧ ({∅} × 𝐵) ≈ 𝐵) → ({1o} × ({∅} × 𝐵)) ≈ 𝐵)
1612, 14, 15syl2anc 411 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({∅} × 𝐵)) ≈ 𝐵)
1716ensymd 6842 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵 ≈ ({1o} × ({∅} × 𝐵)))
18 xp01disjl 6492 . . . . 5 (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅
1918a1i 9 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅)
20 djuenun 7279 . . . 4 ((𝐴 ≈ ({∅} × 𝐴) ∧ 𝐵 ≈ ({1o} × ({∅} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅) → (𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))))
215, 17, 19, 20syl3anc 1249 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))))
226snex 4218 . . . . . . 7 {1o} ∈ V
23 simp3 1001 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
24 xpexg 4777 . . . . . . 7 (({1o} ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ∈ V)
2522, 23, 24sylancr 414 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ∈ V)
26 xpsnen2g 6888 . . . . . 6 ((1o ∈ V ∧ ({1o} × 𝐶) ∈ V) → ({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶))
276, 25, 26sylancr 414 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶))
28 xpsnen2g 6888 . . . . . 6 ((1o ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
296, 23, 28sylancr 414 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
30 entr 6843 . . . . 5 ((({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶) ∧ ({1o} × 𝐶) ≈ 𝐶) → ({1o} × ({1o} × 𝐶)) ≈ 𝐶)
3127, 29, 30syl2anc 411 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({1o} × 𝐶)) ≈ 𝐶)
3231ensymd 6842 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶 ≈ ({1o} × ({1o} × 𝐶)))
33 indir 3412 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶))))
34 xp01disjl 6492 . . . . . . 7 (({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) = ∅
35 xp01disjl 6492 . . . . . . . . 9 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
3635xpeq2i 4684 . . . . . . . 8 ({1o} × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = ({1o} × ∅)
37 xpindi 4801 . . . . . . . 8 ({1o} × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))
38 xp0 5089 . . . . . . . 8 ({1o} × ∅) = ∅
3936, 37, 383eqtr3i 2225 . . . . . . 7 (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶))) = ∅
4034, 39uneq12i 3315 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))) = (∅ ∪ ∅)
41 un0 3484 . . . . . 6 (∅ ∪ ∅) = ∅
4240, 41eqtri 2217 . . . . 5 ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))) = ∅
4333, 42eqtri 2217 . . . 4 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅
4443a1i 9 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅)
45 djuenun 7279 . . 3 (((𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∧ 𝐶 ≈ ({1o} × ({1o} × 𝐶)) ∧ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅) → ((𝐴𝐵) ⊔ 𝐶) ≈ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))))
4621, 32, 44, 45syl3anc 1249 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))))
47 df-dju 7104 . . . . . 6 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
4847xpeq2i 4684 . . . . 5 ({1o} × (𝐵𝐶)) = ({1o} × (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
49 xpundi 4719 . . . . 5 ({1o} × (({∅} × 𝐵) ∪ ({1o} × 𝐶))) = (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶)))
5048, 49eqtri 2217 . . . 4 ({1o} × (𝐵𝐶)) = (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶)))
5150uneq2i 3314 . . 3 (({∅} × 𝐴) ∪ ({1o} × (𝐵𝐶))) = (({∅} × 𝐴) ∪ (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶))))
52 df-dju 7104 . . 3 (𝐴 ⊔ (𝐵𝐶)) = (({∅} × 𝐴) ∪ ({1o} × (𝐵𝐶)))
53 unass 3320 . . 3 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))) = (({∅} × 𝐴) ∪ (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶))))
5451, 52, 533eqtr4i 2227 . 2 (𝐴 ⊔ (𝐵𝐶)) = ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶)))
5546, 54breqtrrdi 4075 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  cin 3156  c0 3450  {csn 3622   class class class wbr 4033   × cxp 4661  1oc1o 6467  cen 6797  cdju 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-er 6592  df-en 6800  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator