ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdjuen GIF version

Theorem xpdjuen 7091
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdjuen ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))

Proof of Theorem xpdjuen
StepHypRef Expression
1 enrefg 6666 . . . . . 6 (𝐴𝑉𝐴𝐴)
213ad2ant1 1003 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝐴)
3 0ex 4063 . . . . . . 7 ∅ ∈ V
4 simp2 983 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
5 xpsnen2g 6731 . . . . . . 7 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
63, 4, 5sylancr 411 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
76ensymd 6685 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵 ≈ ({∅} × 𝐵))
8 xpen 6747 . . . . 5 ((𝐴𝐴𝐵 ≈ ({∅} × 𝐵)) → (𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)))
92, 7, 8syl2anc 409 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)))
10 1on 6328 . . . . . . 7 1o ∈ On
11 simp3 984 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
12 xpsnen2g 6731 . . . . . . 7 ((1o ∈ On ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
1310, 11, 12sylancr 411 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
1413ensymd 6685 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶 ≈ ({1o} × 𝐶))
15 xpen 6747 . . . . 5 ((𝐴𝐴𝐶 ≈ ({1o} × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)))
162, 14, 15syl2anc 409 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)))
17 xp01disjl 6339 . . . . . . 7 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
1817xpeq2i 4568 . . . . . 6 (𝐴 × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = (𝐴 × ∅)
19 xpindi 4682 . . . . . 6 (𝐴 × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶)))
20 xp0 4966 . . . . . 6 (𝐴 × ∅) = ∅
2118, 19, 203eqtr3i 2169 . . . . 5 ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅
2221a1i 9 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅)
23 djuenun 7085 . . . 4 (((𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)) ∧ (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)) ∧ ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶))))
249, 16, 22, 23syl3anc 1217 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶))))
25 df-dju 6931 . . . . 5 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
2625xpeq2i 4568 . . . 4 (𝐴 × (𝐵𝐶)) = (𝐴 × (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
27 xpundi 4603 . . . 4 (𝐴 × (({∅} × 𝐵) ∪ ({1o} × 𝐶))) = ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶)))
2826, 27eqtri 2161 . . 3 (𝐴 × (𝐵𝐶)) = ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶)))
2924, 28breqtrrdi 3978 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ (𝐴 × (𝐵𝐶)))
3029ensymd 6685 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 963   = wceq 1332  wcel 1481  Vcvv 2689  cun 3074  cin 3075  c0 3368  {csn 3532   class class class wbr 3937  Oncon0 4293   × cxp 4545  1oc1o 6314  cen 6640  cdju 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-1o 6321  df-er 6437  df-en 6643  df-dju 6931  df-inl 6940  df-inr 6941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator