ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdjuen GIF version

Theorem xpdjuen 7235
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdjuen ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))

Proof of Theorem xpdjuen
StepHypRef Expression
1 enrefg 6782 . . . . . 6 (𝐴𝑉𝐴𝐴)
213ad2ant1 1020 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝐴)
3 0ex 4145 . . . . . . 7 ∅ ∈ V
4 simp2 1000 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
5 xpsnen2g 6847 . . . . . . 7 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
63, 4, 5sylancr 414 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
76ensymd 6801 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵 ≈ ({∅} × 𝐵))
8 xpen 6863 . . . . 5 ((𝐴𝐴𝐵 ≈ ({∅} × 𝐵)) → (𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)))
92, 7, 8syl2anc 411 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)))
10 1on 6442 . . . . . . 7 1o ∈ On
11 simp3 1001 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
12 xpsnen2g 6847 . . . . . . 7 ((1o ∈ On ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
1310, 11, 12sylancr 414 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
1413ensymd 6801 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶 ≈ ({1o} × 𝐶))
15 xpen 6863 . . . . 5 ((𝐴𝐴𝐶 ≈ ({1o} × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)))
162, 14, 15syl2anc 411 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)))
17 xp01disjl 6453 . . . . . . 7 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
1817xpeq2i 4662 . . . . . 6 (𝐴 × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = (𝐴 × ∅)
19 xpindi 4777 . . . . . 6 (𝐴 × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶)))
20 xp0 5063 . . . . . 6 (𝐴 × ∅) = ∅
2118, 19, 203eqtr3i 2218 . . . . 5 ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅
2221a1i 9 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅)
23 djuenun 7229 . . . 4 (((𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)) ∧ (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)) ∧ ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶))))
249, 16, 22, 23syl3anc 1249 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶))))
25 df-dju 7055 . . . . 5 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
2625xpeq2i 4662 . . . 4 (𝐴 × (𝐵𝐶)) = (𝐴 × (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
27 xpundi 4697 . . . 4 (𝐴 × (({∅} × 𝐵) ∪ ({1o} × 𝐶))) = ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶)))
2826, 27eqtri 2210 . . 3 (𝐴 × (𝐵𝐶)) = ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶)))
2924, 28breqtrrdi 4060 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ (𝐴 × (𝐵𝐶)))
3029ensymd 6801 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2160  Vcvv 2752  cun 3142  cin 3143  c0 3437  {csn 3607   class class class wbr 4018  Oncon0 4378   × cxp 4639  1oc1o 6428  cen 6756  cdju 7054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-suc 4386  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-1o 6435  df-er 6553  df-en 6759  df-dju 7055  df-inl 7064  df-inr 7065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator