Proof of Theorem xpdjuen
Step | Hyp | Ref
| Expression |
1 | | enrefg 6730 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
2 | 1 | 3ad2ant1 1008 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐴 ≈ 𝐴) |
3 | | 0ex 4109 |
. . . . . . 7
⊢ ∅
∈ V |
4 | | simp2 988 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ 𝑊) |
5 | | xpsnen2g 6795 |
. . . . . . 7
⊢ ((∅
∈ V ∧ 𝐵 ∈
𝑊) → ({∅}
× 𝐵) ≈ 𝐵) |
6 | 3, 4, 5 | sylancr 411 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ({∅} × 𝐵) ≈ 𝐵) |
7 | 6 | ensymd 6749 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐵 ≈ ({∅} × 𝐵)) |
8 | | xpen 6811 |
. . . . 5
⊢ ((𝐴 ≈ 𝐴 ∧ 𝐵 ≈ ({∅} × 𝐵)) → (𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵))) |
9 | 2, 7, 8 | syl2anc 409 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵))) |
10 | | 1on 6391 |
. . . . . . 7
⊢
1o ∈ On |
11 | | simp3 989 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ 𝑋) |
12 | | xpsnen2g 6795 |
. . . . . . 7
⊢
((1o ∈ On ∧ 𝐶 ∈ 𝑋) → ({1o} × 𝐶) ≈ 𝐶) |
13 | 10, 11, 12 | sylancr 411 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ({1o} × 𝐶) ≈ 𝐶) |
14 | 13 | ensymd 6749 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐶 ≈ ({1o} × 𝐶)) |
15 | | xpen 6811 |
. . . . 5
⊢ ((𝐴 ≈ 𝐴 ∧ 𝐶 ≈ ({1o} × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶))) |
16 | 2, 14, 15 | syl2anc 409 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶))) |
17 | | xp01disjl 6402 |
. . . . . . 7
⊢
(({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅ |
18 | 17 | xpeq2i 4625 |
. . . . . 6
⊢ (𝐴 × (({∅} ×
𝐵) ∩ ({1o}
× 𝐶))) = (𝐴 ×
∅) |
19 | | xpindi 4739 |
. . . . . 6
⊢ (𝐴 × (({∅} ×
𝐵) ∩ ({1o}
× 𝐶))) = ((𝐴 × ({∅} ×
𝐵)) ∩ (𝐴 × ({1o}
× 𝐶))) |
20 | | xp0 5023 |
. . . . . 6
⊢ (𝐴 × ∅) =
∅ |
21 | 18, 19, 20 | 3eqtr3i 2194 |
. . . . 5
⊢ ((𝐴 × ({∅} ×
𝐵)) ∩ (𝐴 × ({1o}
× 𝐶))) =
∅ |
22 | 21 | a1i 9 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅) |
23 | | djuenun 7168 |
. . . 4
⊢ (((𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)) ∧ (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)) ∧ ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶)))) |
24 | 9, 16, 22, 23 | syl3anc 1228 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶)))) |
25 | | df-dju 7003 |
. . . . 5
⊢ (𝐵 ⊔ 𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶)) |
26 | 25 | xpeq2i 4625 |
. . . 4
⊢ (𝐴 × (𝐵 ⊔ 𝐶)) = (𝐴 × (({∅} × 𝐵) ∪ ({1o} ×
𝐶))) |
27 | | xpundi 4660 |
. . . 4
⊢ (𝐴 × (({∅} ×
𝐵) ∪ ({1o}
× 𝐶))) = ((𝐴 × ({∅} ×
𝐵)) ∪ (𝐴 × ({1o}
× 𝐶))) |
28 | 26, 27 | eqtri 2186 |
. . 3
⊢ (𝐴 × (𝐵 ⊔ 𝐶)) = ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶))) |
29 | 24, 28 | breqtrrdi 4024 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ (𝐴 × (𝐵 ⊔ 𝐶))) |
30 | 29 | ensymd 6749 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 × (𝐵 ⊔ 𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶))) |