ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdjuen GIF version

Theorem xpdjuen 7301
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdjuen ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))

Proof of Theorem xpdjuen
StepHypRef Expression
1 enrefg 6832 . . . . . 6 (𝐴𝑉𝐴𝐴)
213ad2ant1 1020 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝐴)
3 0ex 4161 . . . . . . 7 ∅ ∈ V
4 simp2 1000 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
5 xpsnen2g 6897 . . . . . . 7 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
63, 4, 5sylancr 414 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
76ensymd 6851 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵 ≈ ({∅} × 𝐵))
8 xpen 6915 . . . . 5 ((𝐴𝐴𝐵 ≈ ({∅} × 𝐵)) → (𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)))
92, 7, 8syl2anc 411 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)))
10 1on 6490 . . . . . . 7 1o ∈ On
11 simp3 1001 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
12 xpsnen2g 6897 . . . . . . 7 ((1o ∈ On ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
1310, 11, 12sylancr 414 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
1413ensymd 6851 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶 ≈ ({1o} × 𝐶))
15 xpen 6915 . . . . 5 ((𝐴𝐴𝐶 ≈ ({1o} × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)))
162, 14, 15syl2anc 411 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)))
17 xp01disjl 6501 . . . . . . 7 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
1817xpeq2i 4685 . . . . . 6 (𝐴 × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = (𝐴 × ∅)
19 xpindi 4802 . . . . . 6 (𝐴 × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶)))
20 xp0 5090 . . . . . 6 (𝐴 × ∅) = ∅
2118, 19, 203eqtr3i 2225 . . . . 5 ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅
2221a1i 9 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅)
23 djuenun 7295 . . . 4 (((𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)) ∧ (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)) ∧ ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶))))
249, 16, 22, 23syl3anc 1249 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶))))
25 df-dju 7113 . . . . 5 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
2625xpeq2i 4685 . . . 4 (𝐴 × (𝐵𝐶)) = (𝐴 × (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
27 xpundi 4720 . . . 4 (𝐴 × (({∅} × 𝐵) ∪ ({1o} × 𝐶))) = ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶)))
2826, 27eqtri 2217 . . 3 (𝐴 × (𝐵𝐶)) = ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶)))
2924, 28breqtrrdi 4076 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ (𝐴 × (𝐵𝐶)))
3029ensymd 6851 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  cin 3156  c0 3451  {csn 3623   class class class wbr 4034  Oncon0 4399   × cxp 4662  1oc1o 6476  cen 6806  cdju 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-1o 6483  df-er 6601  df-en 6809  df-dju 7113  df-inl 7122  df-inr 7123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator