ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2dju GIF version

Theorem xp2dju 7385
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju (2o × 𝐴) = (𝐴𝐴)

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 4773 . 2 (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
2 df2o3 6566 . . . 4 2o = {∅, 1o}
3 df-pr 3673 . . . 4 {∅, 1o} = ({∅} ∪ {1o})
42, 3eqtri 2250 . . 3 2o = ({∅} ∪ {1o})
54xpeq1i 4736 . 2 (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴)
6 df-dju 7193 . 2 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
71, 5, 63eqtr4i 2260 1 (2o × 𝐴) = (𝐴𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cun 3195  c0 3491  {csn 3666  {cpr 3667   × cxp 4714  1oc1o 6545  2oc2o 6546  cdju 7192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-pr 3673  df-opab 4145  df-suc 4459  df-xp 4722  df-1o 6552  df-2o 6553  df-dju 7193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator