![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xp2dju | GIF version |
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
xp2dju | ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundir 4695 | . 2 ⊢ (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
2 | df2o3 6445 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | df-pr 3611 | . . . 4 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
4 | 2, 3 | eqtri 2208 | . . 3 ⊢ 2o = ({∅} ∪ {1o}) |
5 | 4 | xpeq1i 4658 | . 2 ⊢ (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴) |
6 | df-dju 7051 | . 2 ⊢ (𝐴 ⊔ 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
7 | 1, 5, 6 | 3eqtr4i 2218 | 1 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∪ cun 3139 ∅c0 3434 {csn 3604 {cpr 3605 × cxp 4636 1oc1o 6424 2oc2o 6425 ⊔ cdju 7050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-dif 3143 df-un 3145 df-nul 3435 df-pr 3611 df-opab 4077 df-suc 4383 df-xp 4644 df-1o 6431 df-2o 6432 df-dju 7051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |