| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp2dju | GIF version | ||
| Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| xp2dju | ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir 4720 | . 2 ⊢ (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
| 2 | df2o3 6488 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 3 | df-pr 3629 | . . . 4 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 4 | 2, 3 | eqtri 2217 | . . 3 ⊢ 2o = ({∅} ∪ {1o}) |
| 5 | 4 | xpeq1i 4683 | . 2 ⊢ (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴) |
| 6 | df-dju 7104 | . 2 ⊢ (𝐴 ⊔ 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
| 7 | 1, 5, 6 | 3eqtr4i 2227 | 1 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∪ cun 3155 ∅c0 3450 {csn 3622 {cpr 3623 × cxp 4661 1oc1o 6467 2oc2o 6468 ⊔ cdju 7103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-pr 3629 df-opab 4095 df-suc 4406 df-xp 4669 df-1o 6474 df-2o 6475 df-dju 7104 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |