ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2dju GIF version

Theorem xp2dju 7282
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju (2o × 𝐴) = (𝐴𝐴)

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 4720 . 2 (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
2 df2o3 6488 . . . 4 2o = {∅, 1o}
3 df-pr 3629 . . . 4 {∅, 1o} = ({∅} ∪ {1o})
42, 3eqtri 2217 . . 3 2o = ({∅} ∪ {1o})
54xpeq1i 4683 . 2 (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴)
6 df-dju 7104 . 2 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
71, 5, 63eqtr4i 2227 1 (2o × 𝐴) = (𝐴𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cun 3155  c0 3450  {csn 3622  {cpr 3623   × cxp 4661  1oc1o 6467  2oc2o 6468  cdju 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-pr 3629  df-opab 4095  df-suc 4406  df-xp 4669  df-1o 6474  df-2o 6475  df-dju 7104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator