| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp2dju | GIF version | ||
| Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| xp2dju | ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir 4737 | . 2 ⊢ (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
| 2 | df2o3 6526 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 3 | df-pr 3642 | . . . 4 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 4 | 2, 3 | eqtri 2227 | . . 3 ⊢ 2o = ({∅} ∪ {1o}) |
| 5 | 4 | xpeq1i 4700 | . 2 ⊢ (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴) |
| 6 | df-dju 7152 | . 2 ⊢ (𝐴 ⊔ 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
| 7 | 1, 5, 6 | 3eqtr4i 2237 | 1 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3166 ∅c0 3462 {csn 3635 {cpr 3636 × cxp 4678 1oc1o 6505 2oc2o 6506 ⊔ cdju 7151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3170 df-un 3172 df-nul 3463 df-pr 3642 df-opab 4111 df-suc 4423 df-xp 4686 df-1o 6512 df-2o 6513 df-dju 7152 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |