ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2dju GIF version

Theorem xp2dju 7275
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju (2o × 𝐴) = (𝐴𝐴)

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 4716 . 2 (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
2 df2o3 6483 . . . 4 2o = {∅, 1o}
3 df-pr 3625 . . . 4 {∅, 1o} = ({∅} ∪ {1o})
42, 3eqtri 2214 . . 3 2o = ({∅} ∪ {1o})
54xpeq1i 4679 . 2 (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴)
6 df-dju 7097 . 2 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
71, 5, 63eqtr4i 2224 1 (2o × 𝐴) = (𝐴𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cun 3151  c0 3446  {csn 3618  {cpr 3619   × cxp 4657  1oc1o 6462  2oc2o 6463  cdju 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-nul 3447  df-pr 3625  df-opab 4091  df-suc 4402  df-xp 4665  df-1o 6469  df-2o 6470  df-dju 7097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator