| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp2dju | GIF version | ||
| Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| xp2dju | ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir 4773 | . 2 ⊢ (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
| 2 | df2o3 6566 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 3 | df-pr 3673 | . . . 4 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 4 | 2, 3 | eqtri 2250 | . . 3 ⊢ 2o = ({∅} ∪ {1o}) |
| 5 | 4 | xpeq1i 4736 | . 2 ⊢ (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴) |
| 6 | df-dju 7193 | . 2 ⊢ (𝐴 ⊔ 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
| 7 | 1, 5, 6 | 3eqtr4i 2260 | 1 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 ∅c0 3491 {csn 3666 {cpr 3667 × cxp 4714 1oc1o 6545 2oc2o 6546 ⊔ cdju 7192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-pr 3673 df-opab 4145 df-suc 4459 df-xp 4722 df-1o 6552 df-2o 6553 df-dju 7193 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |