| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djulcl | GIF version | ||
| Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| djulcl | ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
| 2 | 0ex 4187 | . . . . 5 ⊢ ∅ ∈ V | |
| 3 | 2 | snid 3674 | . . . 4 ⊢ ∅ ∈ {∅} |
| 4 | opelxpi 4725 | . . . 4 ⊢ ((∅ ∈ {∅} ∧ 𝐶 ∈ 𝐴) → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) | |
| 5 | 3, 4 | mpan 424 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) |
| 6 | opeq2 3834 | . . . 4 ⊢ (𝑥 = 𝐶 → 〈∅, 𝑥〉 = 〈∅, 𝐶〉) | |
| 7 | df-inl 7175 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 8 | 6, 7 | fvmptg 5678 | . . 3 ⊢ ((𝐶 ∈ V ∧ 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) → (inl‘𝐶) = 〈∅, 𝐶〉) |
| 9 | 1, 5, 8 | syl2anc 411 | . 2 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) = 〈∅, 𝐶〉) |
| 10 | elun1 3348 | . . . 4 ⊢ (〈∅, 𝐶〉 ∈ ({∅} × 𝐴) → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
| 11 | 5, 10 | syl 14 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 12 | df-dju 7166 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 13 | 11, 12 | eleqtrrdi 2301 | . 2 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
| 14 | 9, 13 | eqeltrd 2284 | 1 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∪ cun 3172 ∅c0 3468 {csn 3643 〈cop 3646 × cxp 4691 ‘cfv 5290 1oc1o 6518 ⊔ cdju 7165 inlcinl 7173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-dju 7166 df-inl 7175 |
| This theorem is referenced by: djulclb 7183 updjudhcoinlf 7208 omp1eomlem 7222 difinfsnlem 7227 difinfsn 7228 ctmlemr 7236 ctm 7237 ctssdclemn0 7238 ctssdccl 7239 fodju0 7275 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |