| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djulcl | GIF version | ||
| Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| djulcl | ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
| 2 | 0ex 4171 | . . . . 5 ⊢ ∅ ∈ V | |
| 3 | 2 | snid 3664 | . . . 4 ⊢ ∅ ∈ {∅} |
| 4 | opelxpi 4707 | . . . 4 ⊢ ((∅ ∈ {∅} ∧ 𝐶 ∈ 𝐴) → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) | |
| 5 | 3, 4 | mpan 424 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) |
| 6 | opeq2 3820 | . . . 4 ⊢ (𝑥 = 𝐶 → 〈∅, 𝑥〉 = 〈∅, 𝐶〉) | |
| 7 | df-inl 7149 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 8 | 6, 7 | fvmptg 5655 | . . 3 ⊢ ((𝐶 ∈ V ∧ 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) → (inl‘𝐶) = 〈∅, 𝐶〉) |
| 9 | 1, 5, 8 | syl2anc 411 | . 2 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) = 〈∅, 𝐶〉) |
| 10 | elun1 3340 | . . . 4 ⊢ (〈∅, 𝐶〉 ∈ ({∅} × 𝐴) → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
| 11 | 5, 10 | syl 14 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 12 | df-dju 7140 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 13 | 11, 12 | eleqtrrdi 2299 | . 2 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
| 14 | 9, 13 | eqeltrd 2282 | 1 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∪ cun 3164 ∅c0 3460 {csn 3633 〈cop 3636 × cxp 4673 ‘cfv 5271 1oc1o 6495 ⊔ cdju 7139 inlcinl 7147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-dju 7140 df-inl 7149 |
| This theorem is referenced by: djulclb 7157 updjudhcoinlf 7182 omp1eomlem 7196 difinfsnlem 7201 difinfsn 7202 ctmlemr 7210 ctm 7211 ctssdclemn0 7212 ctssdccl 7213 fodju0 7249 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |