| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djulcl | GIF version | ||
| Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| djulcl | ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
| 2 | 0ex 4210 | . . . . 5 ⊢ ∅ ∈ V | |
| 3 | 2 | snid 3697 | . . . 4 ⊢ ∅ ∈ {∅} |
| 4 | opelxpi 4750 | . . . 4 ⊢ ((∅ ∈ {∅} ∧ 𝐶 ∈ 𝐴) → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) | |
| 5 | 3, 4 | mpan 424 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) |
| 6 | opeq2 3857 | . . . 4 ⊢ (𝑥 = 𝐶 → 〈∅, 𝑥〉 = 〈∅, 𝐶〉) | |
| 7 | df-inl 7210 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 8 | 6, 7 | fvmptg 5709 | . . 3 ⊢ ((𝐶 ∈ V ∧ 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) → (inl‘𝐶) = 〈∅, 𝐶〉) |
| 9 | 1, 5, 8 | syl2anc 411 | . 2 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) = 〈∅, 𝐶〉) |
| 10 | elun1 3371 | . . . 4 ⊢ (〈∅, 𝐶〉 ∈ ({∅} × 𝐴) → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
| 11 | 5, 10 | syl 14 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 12 | df-dju 7201 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 13 | 11, 12 | eleqtrrdi 2323 | . 2 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
| 14 | 9, 13 | eqeltrd 2306 | 1 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 ∅c0 3491 {csn 3666 〈cop 3669 × cxp 4716 ‘cfv 5317 1oc1o 6553 ⊔ cdju 7200 inlcinl 7208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-dju 7201 df-inl 7210 |
| This theorem is referenced by: djulclb 7218 updjudhcoinlf 7243 omp1eomlem 7257 difinfsnlem 7262 difinfsn 7263 ctmlemr 7271 ctm 7272 ctssdclemn0 7273 ctssdccl 7274 fodju0 7310 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 subctctexmid 16325 |
| Copyright terms: Public domain | W3C validator |