ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulcl GIF version

Theorem djulcl 7117
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djulcl (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djulcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . 3 (𝐶𝐴𝐶 ∈ V)
2 0ex 4160 . . . . 5 ∅ ∈ V
32snid 3653 . . . 4 ∅ ∈ {∅}
4 opelxpi 4695 . . . 4 ((∅ ∈ {∅} ∧ 𝐶𝐴) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
53, 4mpan 424 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
6 opeq2 3809 . . . 4 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
7 df-inl 7113 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
86, 7fvmptg 5637 . . 3 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
91, 5, 8syl2anc 411 . 2 (𝐶𝐴 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
10 elun1 3330 . . . 4 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
115, 10syl 14 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
12 df-dju 7104 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1311, 12eleqtrrdi 2290 . 2 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (𝐴𝐵))
149, 13eqeltrd 2273 1 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  c0 3450  {csn 3622  cop 3625   × cxp 4661  cfv 5258  1oc1o 6467  cdju 7103  inlcinl 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-dju 7104  df-inl 7113
This theorem is referenced by:  djulclb  7121  updjudhcoinlf  7146  omp1eomlem  7160  difinfsnlem  7165  difinfsn  7166  ctmlemr  7174  ctm  7175  ctssdclemn0  7176  ctssdccl  7177  fodju0  7213  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270  subctctexmid  15645
  Copyright terms: Public domain W3C validator