![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djulcl | GIF version |
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djulcl | β’ (πΆ β π΄ β (inlβπΆ) β (π΄ β π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2750 | . . 3 β’ (πΆ β π΄ β πΆ β V) | |
2 | 0ex 4132 | . . . . 5 β’ β β V | |
3 | 2 | snid 3625 | . . . 4 β’ β β {β } |
4 | opelxpi 4660 | . . . 4 β’ ((β β {β } β§ πΆ β π΄) β β¨β , πΆβ© β ({β } Γ π΄)) | |
5 | 3, 4 | mpan 424 | . . 3 β’ (πΆ β π΄ β β¨β , πΆβ© β ({β } Γ π΄)) |
6 | opeq2 3781 | . . . 4 β’ (π₯ = πΆ β β¨β , π₯β© = β¨β , πΆβ©) | |
7 | df-inl 7048 | . . . 4 β’ inl = (π₯ β V β¦ β¨β , π₯β©) | |
8 | 6, 7 | fvmptg 5594 | . . 3 β’ ((πΆ β V β§ β¨β , πΆβ© β ({β } Γ π΄)) β (inlβπΆ) = β¨β , πΆβ©) |
9 | 1, 5, 8 | syl2anc 411 | . 2 β’ (πΆ β π΄ β (inlβπΆ) = β¨β , πΆβ©) |
10 | elun1 3304 | . . . 4 β’ (β¨β , πΆβ© β ({β } Γ π΄) β β¨β , πΆβ© β (({β } Γ π΄) βͺ ({1o} Γ π΅))) | |
11 | 5, 10 | syl 14 | . . 3 β’ (πΆ β π΄ β β¨β , πΆβ© β (({β } Γ π΄) βͺ ({1o} Γ π΅))) |
12 | df-dju 7039 | . . 3 β’ (π΄ β π΅) = (({β } Γ π΄) βͺ ({1o} Γ π΅)) | |
13 | 11, 12 | eleqtrrdi 2271 | . 2 β’ (πΆ β π΄ β β¨β , πΆβ© β (π΄ β π΅)) |
14 | 9, 13 | eqeltrd 2254 | 1 β’ (πΆ β π΄ β (inlβπΆ) β (π΄ β π΅)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 Vcvv 2739 βͺ cun 3129 β c0 3424 {csn 3594 β¨cop 3597 Γ cxp 4626 βcfv 5218 1oc1o 6412 β cdju 7038 inlcinl 7046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-dju 7039 df-inl 7048 |
This theorem is referenced by: djulclb 7056 updjudhcoinlf 7081 omp1eomlem 7095 difinfsnlem 7100 difinfsn 7101 ctmlemr 7109 ctm 7110 ctssdclemn0 7111 ctssdccl 7112 fodju0 7147 exmidfodomrlemr 7203 exmidfodomrlemrALT 7204 subctctexmid 14835 |
Copyright terms: Public domain | W3C validator |