ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulcl GIF version

Theorem djulcl 7152
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djulcl (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djulcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2782 . . 3 (𝐶𝐴𝐶 ∈ V)
2 0ex 4170 . . . . 5 ∅ ∈ V
32snid 3663 . . . 4 ∅ ∈ {∅}
4 opelxpi 4706 . . . 4 ((∅ ∈ {∅} ∧ 𝐶𝐴) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
53, 4mpan 424 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
6 opeq2 3819 . . . 4 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
7 df-inl 7148 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
86, 7fvmptg 5654 . . 3 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
91, 5, 8syl2anc 411 . 2 (𝐶𝐴 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
10 elun1 3339 . . . 4 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
115, 10syl 14 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
12 df-dju 7139 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1311, 12eleqtrrdi 2298 . 2 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (𝐴𝐵))
149, 13eqeltrd 2281 1 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  Vcvv 2771  cun 3163  c0 3459  {csn 3632  cop 3635   × cxp 4672  cfv 5270  1oc1o 6494  cdju 7138  inlcinl 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-dju 7139  df-inl 7148
This theorem is referenced by:  djulclb  7156  updjudhcoinlf  7181  omp1eomlem  7195  difinfsnlem  7200  difinfsn  7201  ctmlemr  7209  ctm  7210  ctssdclemn0  7211  ctssdccl  7212  fodju0  7248  exmidfodomrlemr  7309  exmidfodomrlemrALT  7310  subctctexmid  15899
  Copyright terms: Public domain W3C validator