![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djulcl | GIF version |
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djulcl | ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
2 | 0ex 4156 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 2 | snid 3649 | . . . 4 ⊢ ∅ ∈ {∅} |
4 | opelxpi 4691 | . . . 4 ⊢ ((∅ ∈ {∅} ∧ 𝐶 ∈ 𝐴) → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) | |
5 | 3, 4 | mpan 424 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) |
6 | opeq2 3805 | . . . 4 ⊢ (𝑥 = 𝐶 → 〈∅, 𝑥〉 = 〈∅, 𝐶〉) | |
7 | df-inl 7106 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
8 | 6, 7 | fvmptg 5633 | . . 3 ⊢ ((𝐶 ∈ V ∧ 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) → (inl‘𝐶) = 〈∅, 𝐶〉) |
9 | 1, 5, 8 | syl2anc 411 | . 2 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) = 〈∅, 𝐶〉) |
10 | elun1 3326 | . . . 4 ⊢ (〈∅, 𝐶〉 ∈ ({∅} × 𝐴) → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
11 | 5, 10 | syl 14 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
12 | df-dju 7097 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
13 | 11, 12 | eleqtrrdi 2287 | . 2 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
14 | 9, 13 | eqeltrd 2270 | 1 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 ∅c0 3446 {csn 3618 〈cop 3621 × cxp 4657 ‘cfv 5254 1oc1o 6462 ⊔ cdju 7096 inlcinl 7104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-dju 7097 df-inl 7106 |
This theorem is referenced by: djulclb 7114 updjudhcoinlf 7139 omp1eomlem 7153 difinfsnlem 7158 difinfsn 7159 ctmlemr 7167 ctm 7168 ctssdclemn0 7169 ctssdccl 7170 fodju0 7206 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |