ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulcl GIF version

Theorem djulcl 7214
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djulcl (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djulcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . 3 (𝐶𝐴𝐶 ∈ V)
2 0ex 4210 . . . . 5 ∅ ∈ V
32snid 3697 . . . 4 ∅ ∈ {∅}
4 opelxpi 4750 . . . 4 ((∅ ∈ {∅} ∧ 𝐶𝐴) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
53, 4mpan 424 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
6 opeq2 3857 . . . 4 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
7 df-inl 7210 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
86, 7fvmptg 5709 . . 3 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
91, 5, 8syl2anc 411 . 2 (𝐶𝐴 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
10 elun1 3371 . . . 4 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
115, 10syl 14 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
12 df-dju 7201 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1311, 12eleqtrrdi 2323 . 2 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (𝐴𝐵))
149, 13eqeltrd 2306 1 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cun 3195  c0 3491  {csn 3666  cop 3669   × cxp 4716  cfv 5317  1oc1o 6553  cdju 7200  inlcinl 7208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-dju 7201  df-inl 7210
This theorem is referenced by:  djulclb  7218  updjudhcoinlf  7243  omp1eomlem  7257  difinfsnlem  7262  difinfsn  7263  ctmlemr  7271  ctm  7272  ctssdclemn0  7273  ctssdccl  7274  fodju0  7310  exmidfodomrlemr  7376  exmidfodomrlemrALT  7377  subctctexmid  16325
  Copyright terms: Public domain W3C validator