| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > djuexb | GIF version | ||
| Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) | 
| Ref | Expression | 
|---|---|
| djuexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | djuex 7109 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 2 | df-dju 7104 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 3 | 2 | eleq1i 2262 | . . . 4 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | 
| 4 | unexb 4477 | . . . 4 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
| 5 | 3, 4 | bitr4i 187 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V)) | 
| 6 | 0ex 4160 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 7 | 6 | snm 3742 | . . . . . 6 ⊢ ∃𝑥 𝑥 ∈ {∅} | 
| 8 | rnxpm 5099 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ {∅} → ran ({∅} × 𝐴) = 𝐴) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ ran ({∅} × 𝐴) = 𝐴 | 
| 10 | rnexg 4931 | . . . . 5 ⊢ (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V) | |
| 11 | 9, 10 | eqeltrrid 2284 | . . . 4 ⊢ (({∅} × 𝐴) ∈ V → 𝐴 ∈ V) | 
| 12 | 1oex 6482 | . . . . . . 7 ⊢ 1o ∈ V | |
| 13 | 12 | snm 3742 | . . . . . 6 ⊢ ∃𝑥 𝑥 ∈ {1o} | 
| 14 | rnxpm 5099 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ {1o} → ran ({1o} × 𝐵) = 𝐵) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ran ({1o} × 𝐵) = 𝐵 | 
| 16 | rnexg 4931 | . . . . 5 ⊢ (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V) | |
| 17 | 15, 16 | eqeltrrid 2284 | . . . 4 ⊢ (({1o} × 𝐵) ∈ V → 𝐵 ∈ V) | 
| 18 | 11, 17 | anim12i 338 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 19 | 5, 18 | sylbi 121 | . 2 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 20 | 1, 19 | impbii 126 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ∅c0 3450 {csn 3622 × cxp 4661 ran crn 4664 1oc1o 6467 ⊔ cdju 7103 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-1o 6474 df-dju 7104 | 
| This theorem is referenced by: ctfoex 7184 | 
| Copyright terms: Public domain | W3C validator |