| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuexb | GIF version | ||
| Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) |
| Ref | Expression |
|---|---|
| djuexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuex 7171 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 2 | df-dju 7166 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 3 | 2 | eleq1i 2273 | . . . 4 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
| 4 | unexb 4507 | . . . 4 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
| 5 | 3, 4 | bitr4i 187 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V)) |
| 6 | 0ex 4187 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 7 | 6 | snm 3763 | . . . . . 6 ⊢ ∃𝑥 𝑥 ∈ {∅} |
| 8 | rnxpm 5131 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ {∅} → ran ({∅} × 𝐴) = 𝐴) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ ran ({∅} × 𝐴) = 𝐴 |
| 10 | rnexg 4962 | . . . . 5 ⊢ (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V) | |
| 11 | 9, 10 | eqeltrrid 2295 | . . . 4 ⊢ (({∅} × 𝐴) ∈ V → 𝐴 ∈ V) |
| 12 | 1oex 6533 | . . . . . . 7 ⊢ 1o ∈ V | |
| 13 | 12 | snm 3763 | . . . . . 6 ⊢ ∃𝑥 𝑥 ∈ {1o} |
| 14 | rnxpm 5131 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ {1o} → ran ({1o} × 𝐵) = 𝐵) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ran ({1o} × 𝐵) = 𝐵 |
| 16 | rnexg 4962 | . . . . 5 ⊢ (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V) | |
| 17 | 15, 16 | eqeltrrid 2295 | . . . 4 ⊢ (({1o} × 𝐵) ∈ V → 𝐵 ∈ V) |
| 18 | 11, 17 | anim12i 338 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 19 | 5, 18 | sylbi 121 | . 2 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 20 | 1, 19 | impbii 126 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 ∪ cun 3172 ∅c0 3468 {csn 3643 × cxp 4691 ran crn 4694 1oc1o 6518 ⊔ cdju 7165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 df-rn 4704 df-1o 6525 df-dju 7166 |
| This theorem is referenced by: ctfoex 7246 |
| Copyright terms: Public domain | W3C validator |