ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuexb GIF version

Theorem djuexb 7211
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
Assertion
Ref Expression
djuexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem djuexb
StepHypRef Expression
1 djuex 7210 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
2 df-dju 7205 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
32eleq1i 2295 . . . 4 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
4 unexb 4533 . . . 4 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
53, 4bitr4i 187 . . 3 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V))
6 0ex 4211 . . . . . . 7 ∅ ∈ V
76snm 3787 . . . . . 6 𝑥 𝑥 ∈ {∅}
8 rnxpm 5158 . . . . . 6 (∃𝑥 𝑥 ∈ {∅} → ran ({∅} × 𝐴) = 𝐴)
97, 8ax-mp 5 . . . . 5 ran ({∅} × 𝐴) = 𝐴
10 rnexg 4989 . . . . 5 (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V)
119, 10eqeltrrid 2317 . . . 4 (({∅} × 𝐴) ∈ V → 𝐴 ∈ V)
12 1oex 6570 . . . . . . 7 1o ∈ V
1312snm 3787 . . . . . 6 𝑥 𝑥 ∈ {1o}
14 rnxpm 5158 . . . . . 6 (∃𝑥 𝑥 ∈ {1o} → ran ({1o} × 𝐵) = 𝐵)
1513, 14ax-mp 5 . . . . 5 ran ({1o} × 𝐵) = 𝐵
16 rnexg 4989 . . . . 5 (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V)
1715, 16eqeltrrid 2317 . . . 4 (({1o} × 𝐵) ∈ V → 𝐵 ∈ V)
1811, 17anim12i 338 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
195, 18sylbi 121 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
201, 19impbii 126 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  cun 3195  c0 3491  {csn 3666   × cxp 4717  ran crn 4720  1oc1o 6555  cdju 7204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-1o 6562  df-dju 7205
This theorem is referenced by:  ctfoex  7285
  Copyright terms: Public domain W3C validator