| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuexb | GIF version | ||
| Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) |
| Ref | Expression |
|---|---|
| djuexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuex 7145 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 2 | df-dju 7140 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 3 | 2 | eleq1i 2271 | . . . 4 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
| 4 | unexb 4489 | . . . 4 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
| 5 | 3, 4 | bitr4i 187 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V)) |
| 6 | 0ex 4171 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 7 | 6 | snm 3753 | . . . . . 6 ⊢ ∃𝑥 𝑥 ∈ {∅} |
| 8 | rnxpm 5112 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ {∅} → ran ({∅} × 𝐴) = 𝐴) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ ran ({∅} × 𝐴) = 𝐴 |
| 10 | rnexg 4943 | . . . . 5 ⊢ (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V) | |
| 11 | 9, 10 | eqeltrrid 2293 | . . . 4 ⊢ (({∅} × 𝐴) ∈ V → 𝐴 ∈ V) |
| 12 | 1oex 6510 | . . . . . . 7 ⊢ 1o ∈ V | |
| 13 | 12 | snm 3753 | . . . . . 6 ⊢ ∃𝑥 𝑥 ∈ {1o} |
| 14 | rnxpm 5112 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ {1o} → ran ({1o} × 𝐵) = 𝐵) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ran ({1o} × 𝐵) = 𝐵 |
| 16 | rnexg 4943 | . . . . 5 ⊢ (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V) | |
| 17 | 15, 16 | eqeltrrid 2293 | . . . 4 ⊢ (({1o} × 𝐵) ∈ V → 𝐵 ∈ V) |
| 18 | 11, 17 | anim12i 338 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 19 | 5, 18 | sylbi 121 | . 2 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 20 | 1, 19 | impbii 126 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1515 ∈ wcel 2176 Vcvv 2772 ∪ cun 3164 ∅c0 3460 {csn 3633 × cxp 4673 ran crn 4676 1oc1o 6495 ⊔ cdju 7139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-dm 4685 df-rn 4686 df-1o 6502 df-dju 7140 |
| This theorem is referenced by: ctfoex 7220 |
| Copyright terms: Public domain | W3C validator |