![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djuexb | GIF version |
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) |
Ref | Expression |
---|---|
djuexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuex 6877 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ∈ V) | |
2 | df-dju 6872 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
3 | 2 | eleq1i 2178 | . . . 4 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) |
4 | unexb 4321 | . . . 4 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V) | |
5 | 3, 4 | bitr4i 186 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V)) |
6 | 0ex 4013 | . . . . . . 7 ⊢ ∅ ∈ V | |
7 | 6 | snm 3607 | . . . . . 6 ⊢ ∃𝑥 𝑥 ∈ {∅} |
8 | rnxpm 4924 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ {∅} → ran ({∅} × 𝐴) = 𝐴) | |
9 | 7, 8 | ax-mp 7 | . . . . 5 ⊢ ran ({∅} × 𝐴) = 𝐴 |
10 | rnexg 4760 | . . . . 5 ⊢ (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V) | |
11 | 9, 10 | syl5eqelr 2200 | . . . 4 ⊢ (({∅} × 𝐴) ∈ V → 𝐴 ∈ V) |
12 | 1oex 6272 | . . . . . . 7 ⊢ 1o ∈ V | |
13 | 12 | snm 3607 | . . . . . 6 ⊢ ∃𝑥 𝑥 ∈ {1o} |
14 | rnxpm 4924 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ {1o} → ran ({1o} × 𝐵) = 𝐵) | |
15 | 13, 14 | ax-mp 7 | . . . . 5 ⊢ ran ({1o} × 𝐵) = 𝐵 |
16 | rnexg 4760 | . . . . 5 ⊢ (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V) | |
17 | 15, 16 | syl5eqelr 2200 | . . . 4 ⊢ (({1o} × 𝐵) ∈ V → 𝐵 ∈ V) |
18 | 11, 17 | anim12i 334 | . . 3 ⊢ ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
19 | 5, 18 | sylbi 120 | . 2 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
20 | 1, 19 | impbii 125 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1312 ∃wex 1449 ∈ wcel 1461 Vcvv 2655 ∪ cun 3033 ∅c0 3327 {csn 3491 × cxp 4495 ran crn 4498 1oc1o 6257 ⊔ cdju 6871 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-tr 3985 df-iord 4246 df-on 4248 df-suc 4251 df-xp 4503 df-rel 4504 df-cnv 4505 df-dm 4507 df-rn 4508 df-1o 6264 df-dju 6872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |