ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuexb GIF version

Theorem djuexb 7021
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
Assertion
Ref Expression
djuexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem djuexb
StepHypRef Expression
1 djuex 7020 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
2 df-dju 7015 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
32eleq1i 2236 . . . 4 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
4 unexb 4427 . . . 4 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
53, 4bitr4i 186 . . 3 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V))
6 0ex 4116 . . . . . . 7 ∅ ∈ V
76snm 3703 . . . . . 6 𝑥 𝑥 ∈ {∅}
8 rnxpm 5040 . . . . . 6 (∃𝑥 𝑥 ∈ {∅} → ran ({∅} × 𝐴) = 𝐴)
97, 8ax-mp 5 . . . . 5 ran ({∅} × 𝐴) = 𝐴
10 rnexg 4876 . . . . 5 (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V)
119, 10eqeltrrid 2258 . . . 4 (({∅} × 𝐴) ∈ V → 𝐴 ∈ V)
12 1oex 6403 . . . . . . 7 1o ∈ V
1312snm 3703 . . . . . 6 𝑥 𝑥 ∈ {1o}
14 rnxpm 5040 . . . . . 6 (∃𝑥 𝑥 ∈ {1o} → ran ({1o} × 𝐵) = 𝐵)
1513, 14ax-mp 5 . . . . 5 ran ({1o} × 𝐵) = 𝐵
16 rnexg 4876 . . . . 5 (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V)
1715, 16eqeltrrid 2258 . . . 4 (({1o} × 𝐵) ∈ V → 𝐵 ∈ V)
1811, 17anim12i 336 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
195, 18sylbi 120 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
201, 19impbii 125 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  Vcvv 2730  cun 3119  c0 3414  {csn 3583   × cxp 4609  ran crn 4612  1oc1o 6388  cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-1o 6395  df-dju 7015
This theorem is referenced by:  ctfoex  7095
  Copyright terms: Public domain W3C validator