ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuexb GIF version

Theorem djuexb 6929
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
Assertion
Ref Expression
djuexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem djuexb
StepHypRef Expression
1 djuex 6928 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
2 df-dju 6923 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
32eleq1i 2205 . . . 4 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
4 unexb 4363 . . . 4 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
53, 4bitr4i 186 . . 3 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V))
6 0ex 4055 . . . . . . 7 ∅ ∈ V
76snm 3643 . . . . . 6 𝑥 𝑥 ∈ {∅}
8 rnxpm 4968 . . . . . 6 (∃𝑥 𝑥 ∈ {∅} → ran ({∅} × 𝐴) = 𝐴)
97, 8ax-mp 5 . . . . 5 ran ({∅} × 𝐴) = 𝐴
10 rnexg 4804 . . . . 5 (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V)
119, 10eqeltrrid 2227 . . . 4 (({∅} × 𝐴) ∈ V → 𝐴 ∈ V)
12 1oex 6321 . . . . . . 7 1o ∈ V
1312snm 3643 . . . . . 6 𝑥 𝑥 ∈ {1o}
14 rnxpm 4968 . . . . . 6 (∃𝑥 𝑥 ∈ {1o} → ran ({1o} × 𝐵) = 𝐵)
1513, 14ax-mp 5 . . . . 5 ran ({1o} × 𝐵) = 𝐵
16 rnexg 4804 . . . . 5 (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V)
1715, 16eqeltrrid 2227 . . . 4 (({1o} × 𝐵) ∈ V → 𝐵 ∈ V)
1811, 17anim12i 336 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
195, 18sylbi 120 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
201, 19impbii 125 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  Vcvv 2686  cun 3069  c0 3363  {csn 3527   × cxp 4537  ran crn 4540  1oc1o 6306  cdju 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-tr 4027  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550  df-1o 6313  df-dju 6923
This theorem is referenced by:  ctfoex  7003
  Copyright terms: Public domain W3C validator