ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuexb GIF version

Theorem djuexb 7172
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
Assertion
Ref Expression
djuexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem djuexb
StepHypRef Expression
1 djuex 7171 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
2 df-dju 7166 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
32eleq1i 2273 . . . 4 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
4 unexb 4507 . . . 4 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) ↔ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∈ V)
53, 4bitr4i 187 . . 3 ((𝐴𝐵) ∈ V ↔ (({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V))
6 0ex 4187 . . . . . . 7 ∅ ∈ V
76snm 3763 . . . . . 6 𝑥 𝑥 ∈ {∅}
8 rnxpm 5131 . . . . . 6 (∃𝑥 𝑥 ∈ {∅} → ran ({∅} × 𝐴) = 𝐴)
97, 8ax-mp 5 . . . . 5 ran ({∅} × 𝐴) = 𝐴
10 rnexg 4962 . . . . 5 (({∅} × 𝐴) ∈ V → ran ({∅} × 𝐴) ∈ V)
119, 10eqeltrrid 2295 . . . 4 (({∅} × 𝐴) ∈ V → 𝐴 ∈ V)
12 1oex 6533 . . . . . . 7 1o ∈ V
1312snm 3763 . . . . . 6 𝑥 𝑥 ∈ {1o}
14 rnxpm 5131 . . . . . 6 (∃𝑥 𝑥 ∈ {1o} → ran ({1o} × 𝐵) = 𝐵)
1513, 14ax-mp 5 . . . . 5 ran ({1o} × 𝐵) = 𝐵
16 rnexg 4962 . . . . 5 (({1o} × 𝐵) ∈ V → ran ({1o} × 𝐵) ∈ V)
1715, 16eqeltrrid 2295 . . . 4 (({1o} × 𝐵) ∈ V → 𝐵 ∈ V)
1811, 17anim12i 338 . . 3 ((({∅} × 𝐴) ∈ V ∧ ({1o} × 𝐵) ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
195, 18sylbi 121 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
201, 19impbii 126 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2178  Vcvv 2776  cun 3172  c0 3468  {csn 3643   × cxp 4691  ran crn 4694  1oc1o 6518  cdju 7165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-1o 6525  df-dju 7166
This theorem is referenced by:  ctfoex  7246
  Copyright terms: Public domain W3C validator