Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djulclALT GIF version

Theorem djulclALT 16123
Description: Shortening of djulcl 7214 using djucllem 16122. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djulclALT (𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djulclALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ex 4210 . . . . 5 ∅ ∈ V
2 df-inl 7210 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
31, 2djucllem 16122 . . . 4 (𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴))
43orcd 738 . . 3 (𝐶𝐴 → (((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inl ↾ 𝐴)‘𝐶) ∈ ({1o} × 𝐵)))
5 elun 3345 . . 3 (((inl ↾ 𝐴)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inl ↾ 𝐴)‘𝐶) ∈ ({1o} × 𝐵)))
64, 5sylibr 134 . 2 (𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
7 df-dju 7201 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
86, 7eleqtrrdi 2323 1 (𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713  wcel 2200  cun 3195  c0 3491  {csn 3666   × cxp 4716  cres 4720  cfv 5317  1oc1o 6553  cdju 7200  inlcinl 7208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-dju 7201  df-inl 7210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator