| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > djulclALT | GIF version | ||
| Description: Shortening of djulcl 7152 using djucllem 15669. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| djulclALT | ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4170 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | df-inl 7148 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 3 | 1, 2 | djucllem 15669 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴)) |
| 4 | 3 | orcd 734 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inl ↾ 𝐴)‘𝐶) ∈ ({1o} × 𝐵))) |
| 5 | elun 3313 | . . 3 ⊢ (((inl ↾ 𝐴)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inl ↾ 𝐴)‘𝐶) ∈ ({1o} × 𝐵))) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 7 | df-dju 7139 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 8 | 6, 7 | eleqtrrdi 2298 | 1 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 ∈ wcel 2175 ∪ cun 3163 ∅c0 3459 {csn 3632 × cxp 4672 ↾ cres 4676 ‘cfv 5270 1oc1o 6494 ⊔ cdju 7138 inlcinl 7146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-res 4686 df-iota 5231 df-fun 5272 df-fv 5278 df-dju 7139 df-inl 7148 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |