Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > djulclALT | GIF version |
Description: Shortening of djulcl 7028 using djucllem 13835. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
djulclALT | ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4116 | . . . . 5 ⊢ ∅ ∈ V | |
2 | df-inl 7024 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
3 | 1, 2 | djucllem 13835 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴)) |
4 | 3 | orcd 728 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inl ↾ 𝐴)‘𝐶) ∈ ({1o} × 𝐵))) |
5 | elun 3268 | . . 3 ⊢ (((inl ↾ 𝐴)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inl ↾ 𝐴)‘𝐶) ∈ ({1o} × 𝐵))) | |
6 | 4, 5 | sylibr 133 | . 2 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
7 | df-dju 7015 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
8 | 6, 7 | eleqtrrdi 2264 | 1 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 ∈ wcel 2141 ∪ cun 3119 ∅c0 3414 {csn 3583 × cxp 4609 ↾ cres 4613 ‘cfv 5198 1oc1o 6388 ⊔ cdju 7014 inlcinl 7022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-dju 7015 df-inl 7024 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |