| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > djulclALT | GIF version | ||
| Description: Shortening of djulcl 7179 using djucllem 15936. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| djulclALT | ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4187 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | df-inl 7175 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 3 | 1, 2 | djucllem 15936 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴)) |
| 4 | 3 | orcd 735 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inl ↾ 𝐴)‘𝐶) ∈ ({1o} × 𝐵))) |
| 5 | elun 3322 | . . 3 ⊢ (((inl ↾ 𝐴)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (((inl ↾ 𝐴)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inl ↾ 𝐴)‘𝐶) ∈ ({1o} × 𝐵))) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 7 | df-dju 7166 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 8 | 6, 7 | eleqtrrdi 2301 | 1 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 ∈ wcel 2178 ∪ cun 3172 ∅c0 3468 {csn 3643 × cxp 4691 ↾ cres 4695 ‘cfv 5290 1oc1o 6518 ⊔ cdju 7165 inlcinl 7173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-res 4705 df-iota 5251 df-fun 5292 df-fv 5298 df-dju 7166 df-inl 7175 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |