Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djulclr | GIF version |
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.) |
Ref | Expression |
---|---|
djulclr | ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 5531 | . 2 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) = (inl‘𝐶)) | |
2 | elex 2746 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
3 | 0ex 4125 | . . . . . 6 ⊢ ∅ ∈ V | |
4 | 3 | snid 3620 | . . . . 5 ⊢ ∅ ∈ {∅} |
5 | opelxpi 4652 | . . . . 5 ⊢ ((∅ ∈ {∅} ∧ 𝐶 ∈ 𝐴) → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) | |
6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) |
7 | opeq2 3775 | . . . . 5 ⊢ (𝑥 = 𝐶 → 〈∅, 𝑥〉 = 〈∅, 𝐶〉) | |
8 | df-inl 7036 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
9 | 7, 8 | fvmptg 5584 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) → (inl‘𝐶) = 〈∅, 𝐶〉) |
10 | 2, 6, 9 | syl2anc 411 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) = 〈∅, 𝐶〉) |
11 | elun1 3300 | . . . . 5 ⊢ (〈∅, 𝐶〉 ∈ ({∅} × 𝐴) → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
12 | 6, 11 | syl 14 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
13 | df-dju 7027 | . . . 4 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
14 | 12, 13 | eleqtrrdi 2269 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
15 | 10, 14 | eqeltrd 2252 | . 2 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
16 | 1, 15 | eqeltrd 2252 | 1 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 Vcvv 2735 ∪ cun 3125 ∅c0 3420 {csn 3589 〈cop 3592 × cxp 4618 ↾ cres 4622 ‘cfv 5208 1oc1o 6400 ⊔ cdju 7026 inlcinl 7034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-res 4632 df-iota 5170 df-fun 5210 df-fv 5216 df-dju 7027 df-inl 7036 |
This theorem is referenced by: inlresf1 7050 |
Copyright terms: Public domain | W3C validator |