ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclr GIF version

Theorem djulclr 7026
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djulclr (𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djulclr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvres 5520 . 2 (𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) = (inl‘𝐶))
2 elex 2741 . . . 4 (𝐶𝐴𝐶 ∈ V)
3 0ex 4116 . . . . . 6 ∅ ∈ V
43snid 3614 . . . . 5 ∅ ∈ {∅}
5 opelxpi 4643 . . . . 5 ((∅ ∈ {∅} ∧ 𝐶𝐴) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
64, 5mpan 422 . . . 4 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
7 opeq2 3766 . . . . 5 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
8 df-inl 7024 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
97, 8fvmptg 5572 . . . 4 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
102, 6, 9syl2anc 409 . . 3 (𝐶𝐴 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
11 elun1 3294 . . . . 5 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
126, 11syl 14 . . . 4 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
13 df-dju 7015 . . . 4 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1412, 13eleqtrrdi 2264 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (𝐴𝐵))
1510, 14eqeltrd 2247 . 2 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
161, 15eqeltrd 2247 1 (𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Vcvv 2730  cun 3119  c0 3414  {csn 3583  cop 3586   × cxp 4609  cres 4613  cfv 5198  1oc1o 6388  cdju 7014  inlcinl 7022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-dju 7015  df-inl 7024
This theorem is referenced by:  inlresf1  7038
  Copyright terms: Public domain W3C validator