| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djulclr | GIF version | ||
| Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| djulclr | ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 5585 | . 2 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) = (inl‘𝐶)) | |
| 2 | elex 2774 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
| 3 | 0ex 4161 | . . . . . 6 ⊢ ∅ ∈ V | |
| 4 | 3 | snid 3654 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 5 | opelxpi 4696 | . . . . 5 ⊢ ((∅ ∈ {∅} ∧ 𝐶 ∈ 𝐴) → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) |
| 7 | opeq2 3810 | . . . . 5 ⊢ (𝑥 = 𝐶 → 〈∅, 𝑥〉 = 〈∅, 𝐶〉) | |
| 8 | df-inl 7122 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 9 | 7, 8 | fvmptg 5640 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) → (inl‘𝐶) = 〈∅, 𝐶〉) |
| 10 | 2, 6, 9 | syl2anc 411 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) = 〈∅, 𝐶〉) |
| 11 | elun1 3331 | . . . . 5 ⊢ (〈∅, 𝐶〉 ∈ ({∅} × 𝐴) → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
| 12 | 6, 11 | syl 14 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 13 | df-dju 7113 | . . . 4 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 14 | 12, 13 | eleqtrrdi 2290 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
| 15 | 10, 14 | eqeltrd 2273 | . 2 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| 16 | 1, 15 | eqeltrd 2273 | 1 ⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ∅c0 3451 {csn 3623 〈cop 3626 × cxp 4662 ↾ cres 4666 ‘cfv 5259 1oc1o 6476 ⊔ cdju 7112 inlcinl 7120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-dju 7113 df-inl 7122 |
| This theorem is referenced by: inlresf1 7136 |
| Copyright terms: Public domain | W3C validator |