ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclr GIF version

Theorem djulclr 7014
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djulclr (𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djulclr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvres 5510 . 2 (𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) = (inl‘𝐶))
2 elex 2737 . . . 4 (𝐶𝐴𝐶 ∈ V)
3 0ex 4109 . . . . . 6 ∅ ∈ V
43snid 3607 . . . . 5 ∅ ∈ {∅}
5 opelxpi 4636 . . . . 5 ((∅ ∈ {∅} ∧ 𝐶𝐴) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
64, 5mpan 421 . . . 4 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
7 opeq2 3759 . . . . 5 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
8 df-inl 7012 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
97, 8fvmptg 5562 . . . 4 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
102, 6, 9syl2anc 409 . . 3 (𝐶𝐴 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
11 elun1 3289 . . . . 5 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
126, 11syl 14 . . . 4 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
13 df-dju 7003 . . . 4 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1412, 13eleqtrrdi 2260 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (𝐴𝐵))
1510, 14eqeltrd 2243 . 2 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
161, 15eqeltrd 2243 1 (𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  Vcvv 2726  cun 3114  c0 3409  {csn 3576  cop 3579   × cxp 4602  cres 4606  cfv 5188  1oc1o 6377  cdju 7002  inlcinl 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-dju 7003  df-inl 7012
This theorem is referenced by:  inlresf1  7026
  Copyright terms: Public domain W3C validator