Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djurclr | GIF version |
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.) |
Ref | Expression |
---|---|
djurclr | ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 5489 | . 2 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) = (inr‘𝐶)) | |
2 | elex 2723 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ V) | |
3 | 1oex 6365 | . . . . . 6 ⊢ 1o ∈ V | |
4 | 3 | snid 3591 | . . . . 5 ⊢ 1o ∈ {1o} |
5 | opelxpi 4615 | . . . . 5 ⊢ ((1o ∈ {1o} ∧ 𝐶 ∈ 𝐵) → 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) | |
6 | 4, 5 | mpan 421 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) |
7 | opeq2 3742 | . . . . 5 ⊢ (𝑥 = 𝐶 → 〈1o, 𝑥〉 = 〈1o, 𝐶〉) | |
8 | df-inr 6982 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
9 | 7, 8 | fvmptg 5541 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) → (inr‘𝐶) = 〈1o, 𝐶〉) |
10 | 2, 6, 9 | syl2anc 409 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) = 〈1o, 𝐶〉) |
11 | elun2 3275 | . . . . 5 ⊢ (〈1o, 𝐶〉 ∈ ({1o} × 𝐵) → 〈1o, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
12 | 6, 11 | syl 14 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
13 | df-dju 6972 | . . . 4 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
14 | 12, 13 | eleqtrrdi 2251 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
15 | 10, 14 | eqeltrd 2234 | . 2 ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
16 | 1, 15 | eqeltrd 2234 | 1 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ∪ cun 3100 ∅c0 3394 {csn 3560 〈cop 3563 × cxp 4581 ↾ cres 4585 ‘cfv 5167 1oc1o 6350 ⊔ cdju 6971 inrcinr 6980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-res 4595 df-iota 5132 df-fun 5169 df-fv 5175 df-1o 6357 df-dju 6972 df-inr 6982 |
This theorem is referenced by: inrresf1 6996 |
Copyright terms: Public domain | W3C validator |