![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djurclr | GIF version |
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.) |
Ref | Expression |
---|---|
djurclr | ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 5578 | . 2 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) = (inr‘𝐶)) | |
2 | elex 2771 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ V) | |
3 | 1oex 6477 | . . . . . 6 ⊢ 1o ∈ V | |
4 | 3 | snid 3649 | . . . . 5 ⊢ 1o ∈ {1o} |
5 | opelxpi 4691 | . . . . 5 ⊢ ((1o ∈ {1o} ∧ 𝐶 ∈ 𝐵) → 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) | |
6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) |
7 | opeq2 3805 | . . . . 5 ⊢ (𝑥 = 𝐶 → 〈1o, 𝑥〉 = 〈1o, 𝐶〉) | |
8 | df-inr 7107 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
9 | 7, 8 | fvmptg 5633 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) → (inr‘𝐶) = 〈1o, 𝐶〉) |
10 | 2, 6, 9 | syl2anc 411 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) = 〈1o, 𝐶〉) |
11 | elun2 3327 | . . . . 5 ⊢ (〈1o, 𝐶〉 ∈ ({1o} × 𝐵) → 〈1o, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
12 | 6, 11 | syl 14 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
13 | df-dju 7097 | . . . 4 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
14 | 12, 13 | eleqtrrdi 2287 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
15 | 10, 14 | eqeltrd 2270 | . 2 ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
16 | 1, 15 | eqeltrd 2270 | 1 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 ∅c0 3446 {csn 3618 〈cop 3621 × cxp 4657 ↾ cres 4661 ‘cfv 5254 1oc1o 6462 ⊔ cdju 7096 inrcinr 7105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-1o 6469 df-dju 7097 df-inr 7107 |
This theorem is referenced by: inrresf1 7121 |
Copyright terms: Public domain | W3C validator |