ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djurclr GIF version

Theorem djurclr 7125
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djurclr (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djurclr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvres 5585 . 2 (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) = (inr‘𝐶))
2 elex 2774 . . . 4 (𝐶𝐵𝐶 ∈ V)
3 1oex 6491 . . . . . 6 1o ∈ V
43snid 3654 . . . . 5 1o ∈ {1o}
5 opelxpi 4696 . . . . 5 ((1o ∈ {1o} ∧ 𝐶𝐵) → ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵))
64, 5mpan 424 . . . 4 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵))
7 opeq2 3810 . . . . 5 (𝑥 = 𝐶 → ⟨1o, 𝑥⟩ = ⟨1o, 𝐶⟩)
8 df-inr 7123 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
97, 8fvmptg 5640 . . . 4 ((𝐶 ∈ V ∧ ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵)) → (inr‘𝐶) = ⟨1o, 𝐶⟩)
102, 6, 9syl2anc 411 . . 3 (𝐶𝐵 → (inr‘𝐶) = ⟨1o, 𝐶⟩)
11 elun2 3332 . . . . 5 (⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵) → ⟨1o, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
126, 11syl 14 . . . 4 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
13 df-dju 7113 . . . 4 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1412, 13eleqtrrdi 2290 . . 3 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ (𝐴𝐵))
1510, 14eqeltrd 2273 . 2 (𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))
161, 15eqeltrd 2273 1 (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  c0 3451  {csn 3623  cop 3626   × cxp 4662  cres 4666  cfv 5259  1oc1o 6476  cdju 7112  inrcinr 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-1o 6483  df-dju 7113  df-inr 7123
This theorem is referenced by:  inrresf1  7137
  Copyright terms: Public domain W3C validator