ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djurclr GIF version

Theorem djurclr 6943
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djurclr (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djurclr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvres 5453 . 2 (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) = (inr‘𝐶))
2 elex 2700 . . . 4 (𝐶𝐵𝐶 ∈ V)
3 1oex 6329 . . . . . 6 1o ∈ V
43snid 3563 . . . . 5 1o ∈ {1o}
5 opelxpi 4579 . . . . 5 ((1o ∈ {1o} ∧ 𝐶𝐵) → ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵))
64, 5mpan 421 . . . 4 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵))
7 opeq2 3714 . . . . 5 (𝑥 = 𝐶 → ⟨1o, 𝑥⟩ = ⟨1o, 𝐶⟩)
8 df-inr 6941 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
97, 8fvmptg 5505 . . . 4 ((𝐶 ∈ V ∧ ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵)) → (inr‘𝐶) = ⟨1o, 𝐶⟩)
102, 6, 9syl2anc 409 . . 3 (𝐶𝐵 → (inr‘𝐶) = ⟨1o, 𝐶⟩)
11 elun2 3249 . . . . 5 (⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵) → ⟨1o, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
126, 11syl 14 . . . 4 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
13 df-dju 6931 . . . 4 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1412, 13eleqtrrdi 2234 . . 3 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ (𝐴𝐵))
1510, 14eqeltrd 2217 . 2 (𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))
161, 15eqeltrd 2217 1 (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  Vcvv 2689  cun 3074  c0 3368  {csn 3532  cop 3535   × cxp 4545  cres 4549  cfv 5131  1oc1o 6314  cdju 6930  inrcinr 6939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-res 4559  df-iota 5096  df-fun 5133  df-fv 5139  df-1o 6321  df-dju 6931  df-inr 6941
This theorem is referenced by:  inrresf1  6955
  Copyright terms: Public domain W3C validator