Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djurclALT GIF version

Theorem djurclALT 15448
Description: Shortening of djurcl 7118 using djucllem 15446. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djurclALT (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djurclALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1oex 6482 . . . . 5 1o ∈ V
2 df-inr 7114 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
31, 2djucllem 15446 . . . 4 (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵))
43olcd 735 . . 3 (𝐶𝐵 → (((inr ↾ 𝐵)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵)))
5 elun 3304 . . 3 (((inr ↾ 𝐵)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (((inr ↾ 𝐵)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵)))
64, 5sylibr 134 . 2 (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
7 df-dju 7104 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
86, 7eleqtrrdi 2290 1 (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709  wcel 2167  cun 3155  c0 3450  {csn 3622   × cxp 4661  cres 4665  cfv 5258  1oc1o 6467  cdju 7103  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-1o 6474  df-dju 7104  df-inr 7114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator