| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > djurclALT | GIF version | ||
| Description: Shortening of djurcl 7219 using djucllem 16164. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| djurclALT | ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6570 | . . . . 5 ⊢ 1o ∈ V | |
| 2 | df-inr 7215 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 3 | 1, 2 | djucllem 16164 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵)) |
| 4 | 3 | olcd 739 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (((inr ↾ 𝐵)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵))) |
| 5 | elun 3345 | . . 3 ⊢ (((inr ↾ 𝐵)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (((inr ↾ 𝐵)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵))) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 7 | df-dju 7205 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 8 | 6, 7 | eleqtrrdi 2323 | 1 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 ∈ wcel 2200 ∪ cun 3195 ∅c0 3491 {csn 3666 × cxp 4717 ↾ cres 4721 ‘cfv 5318 1oc1o 6555 ⊔ cdju 7204 inrcinr 7213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-1o 6562 df-dju 7205 df-inr 7215 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |