Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djurclALT GIF version

Theorem djurclALT 13683
Description: Shortening of djurcl 7017 using djucllem 13681. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djurclALT (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djurclALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1oex 6392 . . . . 5 1o ∈ V
2 df-inr 7013 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
31, 2djucllem 13681 . . . 4 (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵))
43olcd 724 . . 3 (𝐶𝐵 → (((inr ↾ 𝐵)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵)))
5 elun 3263 . . 3 (((inr ↾ 𝐵)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (((inr ↾ 𝐵)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵)))
64, 5sylibr 133 . 2 (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
7 df-dju 7003 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
86, 7eleqtrrdi 2260 1 (𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698  wcel 2136  cun 3114  c0 3409  {csn 3576   × cxp 4602  cres 4606  cfv 5188  1oc1o 6377  cdju 7002  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-1o 6384  df-dju 7003  df-inr 7013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator