Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > djurclALT | GIF version |
Description: Shortening of djurcl 6982 using djucllem 13320. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
djurclALT | ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6361 | . . . . 5 ⊢ 1o ∈ V | |
2 | df-inr 6978 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
3 | 1, 2 | djucllem 13320 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵)) |
4 | 3 | olcd 724 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (((inr ↾ 𝐵)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵))) |
5 | elun 3244 | . . 3 ⊢ (((inr ↾ 𝐵)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (((inr ↾ 𝐵)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵))) | |
6 | 4, 5 | sylibr 133 | . 2 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
7 | df-dju 6968 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
8 | 6, 7 | eleqtrrdi 2248 | 1 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 ∈ wcel 2125 ∪ cun 3096 ∅c0 3390 {csn 3556 × cxp 4577 ↾ cres 4581 ‘cfv 5163 1oc1o 6346 ⊔ cdju 6967 inrcinr 6976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-suc 4326 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-res 4591 df-iota 5128 df-fun 5165 df-fv 5171 df-1o 6353 df-dju 6968 df-inr 6978 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |