| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > djurclALT | GIF version | ||
| Description: Shortening of djurcl 7118 using djucllem 15446. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| djurclALT | ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6482 | . . . . 5 ⊢ 1o ∈ V | |
| 2 | df-inr 7114 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 3 | 1, 2 | djucllem 15446 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵)) |
| 4 | 3 | olcd 735 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (((inr ↾ 𝐵)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵))) |
| 5 | elun 3304 | . . 3 ⊢ (((inr ↾ 𝐵)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (((inr ↾ 𝐵)‘𝐶) ∈ ({∅} × 𝐴) ∨ ((inr ↾ 𝐵)‘𝐶) ∈ ({1o} × 𝐵))) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 7 | df-dju 7104 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 8 | 6, 7 | eleqtrrdi 2290 | 1 ⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 ∈ wcel 2167 ∪ cun 3155 ∅c0 3450 {csn 3622 × cxp 4661 ↾ cres 4665 ‘cfv 5258 1oc1o 6467 ⊔ cdju 7103 inrcinr 7112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-1o 6474 df-dju 7104 df-inr 7114 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |