Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuunr | GIF version |
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.) |
Ref | Expression |
---|---|
djuunr | ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1or 7021 | . . . 4 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
2 | f1ofo 5439 | . . . 4 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴):𝐴–onto→({∅} × 𝐴)) | |
3 | forn 5413 | . . . 4 ⊢ ((inl ↾ 𝐴):𝐴–onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴)) | |
4 | 1, 2, 3 | mp2b 8 | . . 3 ⊢ ran (inl ↾ 𝐴) = ({∅} × 𝐴) |
5 | djurf1or 7022 | . . . 4 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
6 | f1ofo 5439 | . . . 4 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵):𝐵–onto→({1o} × 𝐵)) | |
7 | forn 5413 | . . . 4 ⊢ ((inr ↾ 𝐵):𝐵–onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵)) | |
8 | 5, 6, 7 | mp2b 8 | . . 3 ⊢ ran (inr ↾ 𝐵) = ({1o} × 𝐵) |
9 | 4, 8 | uneq12i 3274 | . 2 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
10 | df-dju 7003 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
11 | 9, 10 | eqtr4i 2189 | 1 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∪ cun 3114 ∅c0 3409 {csn 3576 × cxp 4602 ran crn 4605 ↾ cres 4606 –onto→wfo 5186 –1-1-onto→wf1o 5187 1oc1o 6377 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: djuun 7032 eldju 7033 casedm 7051 djudm 7070 |
Copyright terms: Public domain | W3C validator |