| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuunr | GIF version | ||
| Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| djuunr | ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djulf1or 7173 | . . . 4 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
| 2 | f1ofo 5541 | . . . 4 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴):𝐴–onto→({∅} × 𝐴)) | |
| 3 | forn 5513 | . . . 4 ⊢ ((inl ↾ 𝐴):𝐴–onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴)) | |
| 4 | 1, 2, 3 | mp2b 8 | . . 3 ⊢ ran (inl ↾ 𝐴) = ({∅} × 𝐴) |
| 5 | djurf1or 7174 | . . . 4 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
| 6 | f1ofo 5541 | . . . 4 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵):𝐵–onto→({1o} × 𝐵)) | |
| 7 | forn 5513 | . . . 4 ⊢ ((inr ↾ 𝐵):𝐵–onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵)) | |
| 8 | 5, 6, 7 | mp2b 8 | . . 3 ⊢ ran (inr ↾ 𝐵) = ({1o} × 𝐵) |
| 9 | 4, 8 | uneq12i 3329 | . 2 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| 10 | df-dju 7155 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 11 | 9, 10 | eqtr4i 2230 | 1 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3168 ∅c0 3464 {csn 3638 × cxp 4681 ran crn 4684 ↾ cres 4685 –onto→wfo 5278 –1-1-onto→wf1o 5279 1oc1o 6508 ⊔ cdju 7154 inlcinl 7162 inrcinr 7163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1st 6239 df-2nd 6240 df-1o 6515 df-dju 7155 df-inl 7164 df-inr 7165 |
| This theorem is referenced by: djuun 7184 eldju 7185 casedm 7203 djudm 7222 |
| Copyright terms: Public domain | W3C validator |