ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuunr GIF version

Theorem djuunr 7167
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djuunr (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem djuunr
StepHypRef Expression
1 djulf1or 7157 . . . 4 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
2 f1ofo 5528 . . . 4 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴):𝐴onto→({∅} × 𝐴))
3 forn 5500 . . . 4 ((inl ↾ 𝐴):𝐴onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴))
41, 2, 3mp2b 8 . . 3 ran (inl ↾ 𝐴) = ({∅} × 𝐴)
5 djurf1or 7158 . . . 4 (inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵)
6 f1ofo 5528 . . . 4 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵):𝐵onto→({1o} × 𝐵))
7 forn 5500 . . . 4 ((inr ↾ 𝐵):𝐵onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵))
85, 6, 7mp2b 8 . . 3 ran (inr ↾ 𝐵) = ({1o} × 𝐵)
94, 8uneq12i 3324 . 2 (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
10 df-dju 7139 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
119, 10eqtr4i 2228 1 (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1372  cun 3163  c0 3459  {csn 3632   × cxp 4672  ran crn 4675  cres 4676  ontowfo 5268  1-1-ontowf1o 5269  1oc1o 6494  cdju 7138  inlcinl 7146  inrcinr 7147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1st 6225  df-2nd 6226  df-1o 6501  df-dju 7139  df-inl 7148  df-inr 7149
This theorem is referenced by:  djuun  7168  eldju  7169  casedm  7187  djudm  7206
  Copyright terms: Public domain W3C validator