| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuunr | GIF version | ||
| Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| djuunr | ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djulf1or 7157 | . . . 4 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
| 2 | f1ofo 5528 | . . . 4 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴):𝐴–onto→({∅} × 𝐴)) | |
| 3 | forn 5500 | . . . 4 ⊢ ((inl ↾ 𝐴):𝐴–onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴)) | |
| 4 | 1, 2, 3 | mp2b 8 | . . 3 ⊢ ran (inl ↾ 𝐴) = ({∅} × 𝐴) |
| 5 | djurf1or 7158 | . . . 4 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
| 6 | f1ofo 5528 | . . . 4 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵):𝐵–onto→({1o} × 𝐵)) | |
| 7 | forn 5500 | . . . 4 ⊢ ((inr ↾ 𝐵):𝐵–onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵)) | |
| 8 | 5, 6, 7 | mp2b 8 | . . 3 ⊢ ran (inr ↾ 𝐵) = ({1o} × 𝐵) |
| 9 | 4, 8 | uneq12i 3324 | . 2 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| 10 | df-dju 7139 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 11 | 9, 10 | eqtr4i 2228 | 1 ⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∪ cun 3163 ∅c0 3459 {csn 3632 × cxp 4672 ran crn 4675 ↾ cres 4676 –onto→wfo 5268 –1-1-onto→wf1o 5269 1oc1o 6494 ⊔ cdju 7138 inlcinl 7146 inrcinr 7147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1st 6225 df-2nd 6226 df-1o 6501 df-dju 7139 df-inl 7148 df-inr 7149 |
| This theorem is referenced by: djuun 7168 eldju 7169 casedm 7187 djudm 7206 |
| Copyright terms: Public domain | W3C validator |