ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuunr GIF version

Theorem djuunr 7229
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.)
Assertion
Ref Expression
djuunr (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem djuunr
StepHypRef Expression
1 djulf1or 7219 . . . 4 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
2 f1ofo 5578 . . . 4 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) → (inl ↾ 𝐴):𝐴onto→({∅} × 𝐴))
3 forn 5550 . . . 4 ((inl ↾ 𝐴):𝐴onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴))
41, 2, 3mp2b 8 . . 3 ran (inl ↾ 𝐴) = ({∅} × 𝐴)
5 djurf1or 7220 . . . 4 (inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵)
6 f1ofo 5578 . . . 4 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) → (inr ↾ 𝐵):𝐵onto→({1o} × 𝐵))
7 forn 5550 . . . 4 ((inr ↾ 𝐵):𝐵onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵))
85, 6, 7mp2b 8 . . 3 ran (inr ↾ 𝐵) = ({1o} × 𝐵)
94, 8uneq12i 3356 . 2 (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
10 df-dju 7201 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
119, 10eqtr4i 2253 1 (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cun 3195  c0 3491  {csn 3666   × cxp 4716  ran crn 4719  cres 4720  ontowfo 5315  1-1-ontowf1o 5316  1oc1o 6553  cdju 7200  inlcinl 7208  inrcinr 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-dju 7201  df-inl 7210  df-inr 7211
This theorem is referenced by:  djuun  7230  eldju  7231  casedm  7249  djudm  7268
  Copyright terms: Public domain W3C validator