Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djurcl | GIF version |
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djurcl | ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ V) | |
2 | 1oex 6392 | . . . . 5 ⊢ 1o ∈ V | |
3 | 2 | snid 3607 | . . . 4 ⊢ 1o ∈ {1o} |
4 | opelxpi 4636 | . . . 4 ⊢ ((1o ∈ {1o} ∧ 𝐶 ∈ 𝐵) → 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) | |
5 | 3, 4 | mpan 421 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) |
6 | opeq2 3759 | . . . 4 ⊢ (𝑥 = 𝐶 → 〈1o, 𝑥〉 = 〈1o, 𝐶〉) | |
7 | df-inr 7013 | . . . 4 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
8 | 6, 7 | fvmptg 5562 | . . 3 ⊢ ((𝐶 ∈ V ∧ 〈1o, 𝐶〉 ∈ ({1o} × 𝐵)) → (inr‘𝐶) = 〈1o, 𝐶〉) |
9 | 1, 5, 8 | syl2anc 409 | . 2 ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) = 〈1o, 𝐶〉) |
10 | elun2 3290 | . . . 4 ⊢ (〈1o, 𝐶〉 ∈ ({1o} × 𝐵) → 〈1o, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
11 | 5, 10 | syl 14 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
12 | df-dju 7003 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
13 | 11, 12 | eleqtrrdi 2260 | . 2 ⊢ (𝐶 ∈ 𝐵 → 〈1o, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
14 | 9, 13 | eqeltrd 2243 | 1 ⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 ∅c0 3409 {csn 3576 〈cop 3579 × cxp 4602 ‘cfv 5188 1oc1o 6377 ⊔ cdju 7002 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-1o 6384 df-dju 7003 df-inr 7013 |
This theorem is referenced by: updjudhcoinrg 7046 omp1eomlem 7059 difinfsnlem 7064 difinfsn 7065 0ct 7072 ctmlemr 7073 ctssdclemn0 7075 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 |
Copyright terms: Public domain | W3C validator |