ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djurcl GIF version

Theorem djurcl 6990
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djurcl (𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djurcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2723 . . 3 (𝐶𝐵𝐶 ∈ V)
2 1oex 6368 . . . . 5 1o ∈ V
32snid 3591 . . . 4 1o ∈ {1o}
4 opelxpi 4617 . . . 4 ((1o ∈ {1o} ∧ 𝐶𝐵) → ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵))
53, 4mpan 421 . . 3 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵))
6 opeq2 3742 . . . 4 (𝑥 = 𝐶 → ⟨1o, 𝑥⟩ = ⟨1o, 𝐶⟩)
7 df-inr 6986 . . . 4 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
86, 7fvmptg 5543 . . 3 ((𝐶 ∈ V ∧ ⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵)) → (inr‘𝐶) = ⟨1o, 𝐶⟩)
91, 5, 8syl2anc 409 . 2 (𝐶𝐵 → (inr‘𝐶) = ⟨1o, 𝐶⟩)
10 elun2 3275 . . . 4 (⟨1o, 𝐶⟩ ∈ ({1o} × 𝐵) → ⟨1o, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
115, 10syl 14 . . 3 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
12 df-dju 6976 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1311, 12eleqtrrdi 2251 . 2 (𝐶𝐵 → ⟨1o, 𝐶⟩ ∈ (𝐴𝐵))
149, 13eqeltrd 2234 1 (𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  wcel 2128  Vcvv 2712  cun 3100  c0 3394  {csn 3560  cop 3563   × cxp 4583  cfv 5169  1oc1o 6353  cdju 6975  inrcinr 6984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-suc 4331  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-1o 6360  df-dju 6976  df-inr 6986
This theorem is referenced by:  updjudhcoinrg  7019  omp1eomlem  7032  difinfsnlem  7037  difinfsn  7038  0ct  7045  ctmlemr  7046  ctssdclemn0  7048  exmidfodomrlemr  7131  exmidfodomrlemrALT  7132
  Copyright terms: Public domain W3C validator