ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo2 GIF version

Theorem dffo2 5554
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 5550 . . 3 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 forn 5553 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
31, 2jca 306 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
4 ffn 5473 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 df-fo 5324 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
65biimpri 133 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
74, 6sylan 283 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
83, 7impbii 126 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  ran crn 4720   Fn wfn 5313  wf 5314  ontowfo 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-f 5322  df-fo 5324
This theorem is referenced by:  foco  5561  dff1o5  5583  dffo3  5784  dffo4  5785  fo1stresm  6313  fo2ndresm  6314  fo2ndf  6379  1fv  10343
  Copyright terms: Public domain W3C validator