| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffo2 | GIF version | ||
| Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| dffo2 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5550 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | forn 5553 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| 4 | ffn 5473 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 5 | df-fo 5324 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 6 | 5 | biimpri 133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
| 7 | 4, 6 | sylan 283 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
| 8 | 3, 7 | impbii 126 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ran crn 4720 Fn wfn 5313 ⟶wf 5314 –onto→wfo 5316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 df-fo 5324 |
| This theorem is referenced by: foco 5561 dff1o5 5583 dffo3 5784 dffo4 5785 fo1stresm 6313 fo2ndresm 6314 fo2ndf 6379 1fv 10343 |
| Copyright terms: Public domain | W3C validator |