ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foimacnv GIF version

Theorem foimacnv 5501
Description: A reverse version of f1imacnv 5500. (Contributed by Jeff Hankins, 16-Jul-2009.)
Assertion
Ref Expression
foimacnv ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)

Proof of Theorem foimacnv
StepHypRef Expression
1 resima 4961 . 2 ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = (𝐹 “ (𝐹𝐶))
2 fofun 5461 . . . . . 6 (𝐹:𝐴onto𝐵 → Fun 𝐹)
32adantr 276 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → Fun 𝐹)
4 funcnvres2 5313 . . . . 5 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
53, 4syl 14 . . . 4 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
65imaeq1d 4990 . . 3 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹𝐶) “ (𝐹𝐶)) = ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)))
7 resss 4952 . . . . . . . . . . 11 (𝐹𝐶) ⊆ 𝐹
8 cnvss 4821 . . . . . . . . . . 11 ((𝐹𝐶) ⊆ 𝐹(𝐹𝐶) ⊆ 𝐹)
97, 8ax-mp 5 . . . . . . . . . 10 (𝐹𝐶) ⊆ 𝐹
10 cnvcnvss 5104 . . . . . . . . . 10 𝐹𝐹
119, 10sstri 3179 . . . . . . . . 9 (𝐹𝐶) ⊆ 𝐹
12 funss 5257 . . . . . . . . 9 ((𝐹𝐶) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐶)))
1311, 2, 12mpsyl 65 . . . . . . . 8 (𝐹:𝐴onto𝐵 → Fun (𝐹𝐶))
1413adantr 276 . . . . . . 7 ((𝐹:𝐴onto𝐵𝐶𝐵) → Fun (𝐹𝐶))
15 df-ima 4660 . . . . . . . 8 (𝐹𝐶) = ran (𝐹𝐶)
16 df-rn 4658 . . . . . . . 8 ran (𝐹𝐶) = dom (𝐹𝐶)
1715, 16eqtr2i 2211 . . . . . . 7 dom (𝐹𝐶) = (𝐹𝐶)
1814, 17jctir 313 . . . . . 6 ((𝐹:𝐴onto𝐵𝐶𝐵) → (Fun (𝐹𝐶) ∧ dom (𝐹𝐶) = (𝐹𝐶)))
19 df-fn 5241 . . . . . 6 ((𝐹𝐶) Fn (𝐹𝐶) ↔ (Fun (𝐹𝐶) ∧ dom (𝐹𝐶) = (𝐹𝐶)))
2018, 19sylibr 134 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶) Fn (𝐹𝐶))
21 dfdm4 4840 . . . . . 6 dom (𝐹𝐶) = ran (𝐹𝐶)
22 forn 5463 . . . . . . . . . 10 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
2322sseq2d 3200 . . . . . . . . 9 (𝐹:𝐴onto𝐵 → (𝐶 ⊆ ran 𝐹𝐶𝐵))
2423biimpar 297 . . . . . . . 8 ((𝐹:𝐴onto𝐵𝐶𝐵) → 𝐶 ⊆ ran 𝐹)
25 df-rn 4658 . . . . . . . 8 ran 𝐹 = dom 𝐹
2624, 25sseqtrdi 3218 . . . . . . 7 ((𝐹:𝐴onto𝐵𝐶𝐵) → 𝐶 ⊆ dom 𝐹)
27 ssdmres 4950 . . . . . . 7 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
2826, 27sylib 122 . . . . . 6 ((𝐹:𝐴onto𝐵𝐶𝐵) → dom (𝐹𝐶) = 𝐶)
2921, 28eqtr3id 2236 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → ran (𝐹𝐶) = 𝐶)
30 df-fo 5244 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 ↔ ((𝐹𝐶) Fn (𝐹𝐶) ∧ ran (𝐹𝐶) = 𝐶))
3120, 29, 30sylanbrc 417 . . . 4 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶):(𝐹𝐶)–onto𝐶)
32 foima 5465 . . . 4 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
3331, 32syl 14 . . 3 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
346, 33eqtr3d 2224 . 2 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = 𝐶)
351, 34eqtr3id 2236 1 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wss 3144  ccnv 4646  dom cdm 4647  ran crn 4648  cres 4649  cima 4650  Fun wfun 5232   Fn wfn 5233  ontowfo 5236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-br 4022  df-opab 4083  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-fun 5240  df-fn 5241  df-f 5242  df-fo 5244
This theorem is referenced by:  f1opw2  6104  fopwdom  6868  fisumss  11441  fprodssdc  11639  hmeoimaf1o  14299
  Copyright terms: Public domain W3C validator