| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foun | GIF version | ||
| Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| Ref | Expression |
|---|---|
| foun | ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn 5485 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fofn 5485 | . . . 4 ⊢ (𝐺:𝐶–onto→𝐷 → 𝐺 Fn 𝐶) | |
| 3 | 1, 2 | anim12i 338 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶)) |
| 4 | fnun 5367 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) | |
| 5 | 3, 4 | sylan 283 | . 2 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) |
| 6 | rnun 5079 | . . 3 ⊢ ran (𝐹 ∪ 𝐺) = (ran 𝐹 ∪ ran 𝐺) | |
| 7 | forn 5486 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 8 | 7 | ad2antrr 488 | . . . 4 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran 𝐹 = 𝐵) |
| 9 | forn 5486 | . . . . 5 ⊢ (𝐺:𝐶–onto→𝐷 → ran 𝐺 = 𝐷) | |
| 10 | 9 | ad2antlr 489 | . . . 4 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran 𝐺 = 𝐷) |
| 11 | 8, 10 | uneq12d 3319 | . . 3 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (ran 𝐹 ∪ ran 𝐺) = (𝐵 ∪ 𝐷)) |
| 12 | 6, 11 | eqtrid 2241 | . 2 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran (𝐹 ∪ 𝐺) = (𝐵 ∪ 𝐷)) |
| 13 | df-fo 5265 | . 2 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ran (𝐹 ∪ 𝐺) = (𝐵 ∪ 𝐷))) | |
| 14 | 5, 12, 13 | sylanbrc 417 | 1 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∪ cun 3155 ∩ cin 3156 ∅c0 3451 ran crn 4665 Fn wfn 5254 –onto→wfo 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-fo 5265 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |