| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foeq1 | GIF version | ||
| Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| foeq1 | ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5381 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
| 2 | rneq 4924 | . . . 4 ⊢ (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺) | |
| 3 | 2 | eqeq1d 2216 | . . 3 ⊢ (𝐹 = 𝐺 → (ran 𝐹 = 𝐵 ↔ ran 𝐺 = 𝐵)) |
| 4 | 1, 3 | anbi12d 473 | . 2 ⊢ (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵))) |
| 5 | df-fo 5296 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 6 | df-fo 5296 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ran crn 4694 Fn wfn 5285 –onto→wfo 5288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-fo 5296 |
| This theorem is referenced by: f1oeq1 5532 foeq123d 5537 resdif 5566 dif1en 7002 0ct 7235 ctmlemr 7236 ctm 7237 ctssdclemn0 7238 ctssdclemr 7240 ctssdc 7241 enumct 7243 omct 7245 ctssexmid 7278 exmidfodomrlemim 7340 nninfct 12477 ennnfonelemim 12910 ctinfomlemom 12913 ctinfom 12914 ctinf 12916 qnnen 12917 enctlem 12918 ctiunct 12926 omctfn 12929 ssomct 12931 mndfo 13386 znzrhfo 14525 subctctexmid 16139 domomsubct 16140 |
| Copyright terms: Public domain | W3C validator |