![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > foeq1 | GIF version |
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
foeq1 | ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 5305 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) | |
2 | rneq 4855 | . . . 4 ⊢ (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺) | |
3 | 2 | eqeq1d 2186 | . . 3 ⊢ (𝐹 = 𝐺 → (ran 𝐹 = 𝐵 ↔ ran 𝐺 = 𝐵)) |
4 | 1, 3 | anbi12d 473 | . 2 ⊢ (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵))) |
5 | df-fo 5223 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
6 | df-fo 5223 | . 2 ⊢ (𝐺:𝐴–onto→𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵)) | |
7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ran crn 4628 Fn wfn 5212 –onto→wfo 5215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-fun 5219 df-fn 5220 df-fo 5223 |
This theorem is referenced by: f1oeq1 5450 foeq123d 5455 resdif 5484 dif1en 6879 0ct 7106 ctmlemr 7107 ctm 7108 ctssdclemn0 7109 ctssdclemr 7111 ctssdc 7112 enumct 7114 omct 7116 ctssexmid 7148 exmidfodomrlemim 7200 ennnfonelemim 12425 ctinfomlemom 12428 ctinfom 12429 ctinf 12431 qnnen 12432 enctlem 12433 ctiunct 12441 omctfn 12444 ssomct 12446 mndfo 12840 subctctexmid 14753 |
Copyright terms: Public domain | W3C validator |