ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq1 GIF version

Theorem foeq1 5543
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq1 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))

Proof of Theorem foeq1
StepHypRef Expression
1 fneq1 5408 . . 3 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
2 rneq 4950 . . . 4 (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺)
32eqeq1d 2238 . . 3 (𝐹 = 𝐺 → (ran 𝐹 = 𝐵 ↔ ran 𝐺 = 𝐵))
41, 3anbi12d 473 . 2 (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵)))
5 df-fo 5323 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
6 df-fo 5323 . 2 (𝐺:𝐴onto𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵))
74, 5, 63bitr4g 223 1 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  ran crn 4719   Fn wfn 5312  ontowfo 5315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-fo 5323
This theorem is referenced by:  f1oeq1  5559  foeq123d  5564  resdif  5593  dif1en  7037  0ct  7270  ctmlemr  7271  ctm  7272  ctssdclemn0  7273  ctssdclemr  7275  ctssdc  7276  enumct  7278  omct  7280  ctssexmid  7313  exmidfodomrlemim  7375  nninfct  12557  ennnfonelemim  12990  ctinfomlemom  12993  ctinfom  12994  ctinf  12996  qnnen  12997  enctlem  12998  ctiunct  13006  omctfn  13009  ssomct  13011  mndfo  13467  znzrhfo  14606  subctctexmid  16325  domomsubct  16326
  Copyright terms: Public domain W3C validator