ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq1 GIF version

Theorem foeq1 5406
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq1 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))

Proof of Theorem foeq1
StepHypRef Expression
1 fneq1 5276 . . 3 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
2 rneq 4831 . . . 4 (𝐹 = 𝐺 → ran 𝐹 = ran 𝐺)
32eqeq1d 2174 . . 3 (𝐹 = 𝐺 → (ran 𝐹 = 𝐵 ↔ ran 𝐺 = 𝐵))
41, 3anbi12d 465 . 2 (𝐹 = 𝐺 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵)))
5 df-fo 5194 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
6 df-fo 5194 . 2 (𝐺:𝐴onto𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 = 𝐵))
74, 5, 63bitr4g 222 1 (𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  ran crn 4605   Fn wfn 5183  ontowfo 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-fo 5194
This theorem is referenced by:  f1oeq1  5421  foeq123d  5426  resdif  5454  dif1en  6845  0ct  7072  ctmlemr  7073  ctm  7074  ctssdclemn0  7075  ctssdclemr  7077  ctssdc  7078  enumct  7080  omct  7082  ctssexmid  7114  exmidfodomrlemim  7157  ennnfonelemim  12357  ctinfomlemom  12360  ctinfom  12361  ctinf  12363  qnnen  12364  enctlem  12365  ctiunct  12373  omctfn  12376  ssomct  12378  subctctexmid  13881
  Copyright terms: Public domain W3C validator