| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tposfo2 | GIF version | ||
| Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposfo2 | ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposfn2 6365 | . . . 4 ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | |
| 2 | 1 | adantrd 279 | . . 3 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → tpos 𝐹 Fn ◡𝐴)) |
| 3 | fndm 5382 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | releqd 4767 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴)) |
| 5 | 4 | biimparc 299 | . . . . . . 7 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → Rel dom 𝐹) |
| 6 | rntpos 6356 | . . . . . . 7 ⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | |
| 7 | 5, 6 | syl 14 | . . . . . 6 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → ran tpos 𝐹 = ran 𝐹) |
| 8 | 7 | eqeq1d 2215 | . . . . 5 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → (ran tpos 𝐹 = 𝐵 ↔ ran 𝐹 = 𝐵)) |
| 9 | 8 | biimprd 158 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → (ran 𝐹 = 𝐵 → ran tpos 𝐹 = 𝐵)) |
| 10 | 9 | expimpd 363 | . . 3 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → ran tpos 𝐹 = 𝐵)) |
| 11 | 2, 10 | jcad 307 | . 2 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (tpos 𝐹 Fn ◡𝐴 ∧ ran tpos 𝐹 = 𝐵))) |
| 12 | df-fo 5286 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 13 | df-fo 5286 | . 2 ⊢ (tpos 𝐹:◡𝐴–onto→𝐵 ↔ (tpos 𝐹 Fn ◡𝐴 ∧ ran tpos 𝐹 = 𝐵)) | |
| 14 | 11, 12, 13 | 3imtr4g 205 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ◡ccnv 4682 dom cdm 4683 ran crn 4684 Rel wrel 4688 Fn wfn 5275 –onto→wfo 5278 tpos ctpos 6343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fo 5286 df-fv 5288 df-tpos 6344 |
| This theorem is referenced by: tposf2 6367 tposf1o2 6369 tposfo 6370 |
| Copyright terms: Public domain | W3C validator |