| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > forn | GIF version | ||
| Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| forn | ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5264 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ran crn 4664 Fn wfn 5253 –onto→wfo 5256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fo 5264 |
| This theorem is referenced by: dffo2 5484 foima 5485 fodmrnu 5488 f1imacnv 5521 foimacnv 5522 foun 5523 resdif 5526 fococnv2 5530 foelcdmi 5613 cbvfo 5832 cbvexfo 5833 isoini 5865 isoselem 5867 canth 5875 f1opw2 6129 focdmex 6172 bren 6806 en1 6858 fopwdom 6897 mapen 6907 ssenen 6912 phplem4 6916 phplem4on 6928 ordiso2 7101 djuunr 7132 hashfacen 10928 ennnfonelemrn 12636 imasival 12949 imasaddfnlemg 12957 xpsfrn 12993 imasgrp2 13240 imasrng 13512 imasring 13620 znf1o 14207 znleval 14209 znunit 14215 hmeontr 14549 fsumdvdsmul 15227 |
| Copyright terms: Public domain | W3C validator |