ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  forn GIF version

Theorem forn 5486
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
forn (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)

Proof of Theorem forn
StepHypRef Expression
1 df-fo 5265 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
21simprbi 275 1 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ran crn 4665   Fn wfn 5254  ontowfo 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fo 5265
This theorem is referenced by:  dffo2  5487  foima  5488  fodmrnu  5491  f1imacnv  5524  foimacnv  5525  foun  5526  resdif  5529  fococnv2  5533  foelcdmi  5616  cbvfo  5835  cbvexfo  5836  isoini  5868  isoselem  5870  canth  5878  f1opw2  6133  focdmex  6181  bren  6815  en1  6867  fopwdom  6906  mapen  6916  ssenen  6921  phplem4  6925  phplem4on  6937  ordiso2  7110  djuunr  7141  hashfacen  10947  ennnfonelemrn  12663  imasival  13010  imasaddfnlemg  13018  xpsfrn  13054  imasmnd2  13156  imasgrp2  13318  imasrng  13590  imasring  13698  znf1o  14285  znleval  14287  znunit  14293  hmeontr  14657  fsumdvdsmul  15335
  Copyright terms: Public domain W3C validator