ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  forn GIF version

Theorem forn 5423
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
forn (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)

Proof of Theorem forn
StepHypRef Expression
1 df-fo 5204 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
21simprbi 273 1 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  ran crn 4612   Fn wfn 5193  ontowfo 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-fo 5204
This theorem is referenced by:  dffo2  5424  foima  5425  fodmrnu  5428  f1imacnv  5459  foimacnv  5460  foun  5461  resdif  5464  fococnv2  5468  cbvfo  5764  cbvexfo  5765  isoini  5797  isoselem  5799  canth  5807  f1opw2  6055  fornex  6094  bren  6725  en1  6777  fopwdom  6814  mapen  6824  ssenen  6829  phplem4  6833  phplem4on  6845  ordiso2  7012  djuunr  7043  focdmex  10721  hashfacen  10771  ennnfonelemrn  12374  hmeontr  13107
  Copyright terms: Public domain W3C validator