ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  forn GIF version

Theorem forn 5550
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
forn (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)

Proof of Theorem forn
StepHypRef Expression
1 df-fo 5323 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
21simprbi 275 1 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  ran crn 4719   Fn wfn 5312  ontowfo 5315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fo 5323
This theorem is referenced by:  dffo2  5551  foima  5552  fodmrnu  5555  f1imacnv  5588  foimacnv  5589  foun  5590  resdif  5593  fococnv2  5597  foelcdmi  5685  cbvfo  5908  cbvexfo  5909  isoini  5941  isoselem  5943  canth  5951  f1opw2  6210  focdmex  6258  bren  6893  en1  6949  fopwdom  6993  mapen  7003  ssenen  7008  phplem4  7012  phplem4on  7025  ordiso2  7198  djuunr  7229  hashfacen  11053  ennnfonelemrn  12985  imasival  13334  imasaddfnlemg  13342  xpsfrn  13378  imasmnd2  13480  imasgrp2  13642  imasrng  13914  imasring  14022  znf1o  14609  znleval  14611  znunit  14617  hmeontr  14981  fsumdvdsmul  15659
  Copyright terms: Public domain W3C validator