Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > forn | GIF version |
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
forn | ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 5204 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
2 | 1 | simprbi 273 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ran crn 4612 Fn wfn 5193 –onto→wfo 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fo 5204 |
This theorem is referenced by: dffo2 5424 foima 5425 fodmrnu 5428 f1imacnv 5459 foimacnv 5460 foun 5461 resdif 5464 fococnv2 5468 cbvfo 5764 cbvexfo 5765 isoini 5797 isoselem 5799 canth 5807 f1opw2 6055 fornex 6094 bren 6725 en1 6777 fopwdom 6814 mapen 6824 ssenen 6829 phplem4 6833 phplem4on 6845 ordiso2 7012 djuunr 7043 focdmex 10721 hashfacen 10771 ennnfonelemrn 12374 hmeontr 13107 |
Copyright terms: Public domain | W3C validator |