ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  forn GIF version

Theorem forn 5513
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
forn (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)

Proof of Theorem forn
StepHypRef Expression
1 df-fo 5286 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
21simprbi 275 1 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  ran crn 4684   Fn wfn 5275  ontowfo 5278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fo 5286
This theorem is referenced by:  dffo2  5514  foima  5515  fodmrnu  5518  f1imacnv  5551  foimacnv  5552  foun  5553  resdif  5556  fococnv2  5560  foelcdmi  5644  cbvfo  5867  cbvexfo  5868  isoini  5900  isoselem  5902  canth  5910  f1opw2  6165  focdmex  6213  bren  6848  en1  6904  fopwdom  6948  mapen  6958  ssenen  6963  phplem4  6967  phplem4on  6979  ordiso2  7152  djuunr  7183  hashfacen  11003  ennnfonelemrn  12865  imasival  13213  imasaddfnlemg  13221  xpsfrn  13257  imasmnd2  13359  imasgrp2  13521  imasrng  13793  imasring  13901  znf1o  14488  znleval  14490  znunit  14496  hmeontr  14860  fsumdvdsmul  15538
  Copyright terms: Public domain W3C validator