| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > forn | GIF version | ||
| Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| forn | ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5323 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ran crn 4719 Fn wfn 5312 –onto→wfo 5315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fo 5323 |
| This theorem is referenced by: dffo2 5551 foima 5552 fodmrnu 5555 f1imacnv 5588 foimacnv 5589 foun 5590 resdif 5593 fococnv2 5597 foelcdmi 5685 cbvfo 5908 cbvexfo 5909 isoini 5941 isoselem 5943 canth 5951 f1opw2 6210 focdmex 6258 bren 6893 en1 6949 fopwdom 6993 mapen 7003 ssenen 7008 phplem4 7012 phplem4on 7025 ordiso2 7198 djuunr 7229 hashfacen 11053 ennnfonelemrn 12985 imasival 13334 imasaddfnlemg 13342 xpsfrn 13378 imasmnd2 13480 imasgrp2 13642 imasrng 13914 imasring 14022 znf1o 14609 znleval 14611 znunit 14617 hmeontr 14981 fsumdvdsmul 15659 |
| Copyright terms: Public domain | W3C validator |