![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > forn | GIF version |
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
forn | ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 5261 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ran crn 4661 Fn wfn 5250 –onto→wfo 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-fo 5261 |
This theorem is referenced by: dffo2 5481 foima 5482 fodmrnu 5485 f1imacnv 5518 foimacnv 5519 foun 5520 resdif 5523 fococnv2 5527 foelcdmi 5610 cbvfo 5829 cbvexfo 5830 isoini 5862 isoselem 5864 canth 5872 f1opw2 6126 focdmex 6169 bren 6803 en1 6855 fopwdom 6894 mapen 6904 ssenen 6909 phplem4 6913 phplem4on 6925 ordiso2 7096 djuunr 7127 hashfacen 10910 ennnfonelemrn 12579 imasival 12892 imasaddfnlemg 12900 xpsfrn 12936 imasgrp2 13183 imasrng 13455 imasring 13563 znf1o 14150 znleval 14152 znunit 14158 hmeontr 14492 |
Copyright terms: Public domain | W3C validator |