![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > forn | GIF version |
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
forn | ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 5260 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ran crn 4660 Fn wfn 5249 –onto→wfo 5252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-fo 5260 |
This theorem is referenced by: dffo2 5480 foima 5481 fodmrnu 5484 f1imacnv 5517 foimacnv 5518 foun 5519 resdif 5522 fococnv2 5526 foelcdmi 5609 cbvfo 5828 cbvexfo 5829 isoini 5861 isoselem 5863 canth 5871 f1opw2 6124 focdmex 6167 bren 6801 en1 6853 fopwdom 6892 mapen 6902 ssenen 6907 phplem4 6911 phplem4on 6923 ordiso2 7094 djuunr 7125 hashfacen 10907 ennnfonelemrn 12576 imasival 12889 imasaddfnlemg 12897 xpsfrn 12933 imasgrp2 13180 imasrng 13452 imasring 13560 znf1o 14139 znleval 14141 znunit 14147 hmeontr 14481 |
Copyright terms: Public domain | W3C validator |