![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > forn | GIF version |
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
forn | ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 5034 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
2 | 1 | simprbi 270 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ran crn 4453 Fn wfn 5023 –onto→wfo 5026 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fo 5034 |
This theorem is referenced by: dffo2 5250 foima 5251 fodmrnu 5254 f1imacnv 5283 foimacnv 5284 foun 5285 resdif 5288 fococnv2 5292 cbvfo 5578 cbvexfo 5579 isoini 5611 isoselem 5613 f1opw2 5864 fornex 5900 bren 6518 en1 6570 fopwdom 6606 mapen 6616 ssenen 6621 phplem4 6625 phplem4on 6637 ordiso2 6782 djuunr 6812 focdmex 10256 hashfacen 10302 |
Copyright terms: Public domain | W3C validator |