ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  forn GIF version

Theorem forn 5479
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
forn (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)

Proof of Theorem forn
StepHypRef Expression
1 df-fo 5260 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
21simprbi 275 1 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ran crn 4660   Fn wfn 5249  ontowfo 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fo 5260
This theorem is referenced by:  dffo2  5480  foima  5481  fodmrnu  5484  f1imacnv  5517  foimacnv  5518  foun  5519  resdif  5522  fococnv2  5526  foelcdmi  5609  cbvfo  5828  cbvexfo  5829  isoini  5861  isoselem  5863  canth  5871  f1opw2  6124  focdmex  6167  bren  6801  en1  6853  fopwdom  6892  mapen  6902  ssenen  6907  phplem4  6911  phplem4on  6923  ordiso2  7094  djuunr  7125  hashfacen  10907  ennnfonelemrn  12576  imasival  12889  imasaddfnlemg  12897  xpsfrn  12933  imasgrp2  13180  imasrng  13452  imasring  13560  znf1o  14139  znleval  14141  znunit  14147  hmeontr  14481
  Copyright terms: Public domain W3C validator