ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  forn GIF version

Theorem forn 5413
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
forn (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)

Proof of Theorem forn
StepHypRef Expression
1 df-fo 5194 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
21simprbi 273 1 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  ran crn 4605   Fn wfn 5183  ontowfo 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-fo 5194
This theorem is referenced by:  dffo2  5414  foima  5415  fodmrnu  5418  f1imacnv  5449  foimacnv  5450  foun  5451  resdif  5454  fococnv2  5458  cbvfo  5753  cbvexfo  5754  isoini  5786  isoselem  5788  canth  5796  f1opw2  6044  fornex  6083  bren  6713  en1  6765  fopwdom  6802  mapen  6812  ssenen  6817  phplem4  6821  phplem4on  6833  ordiso2  7000  djuunr  7031  focdmex  10700  hashfacen  10749  ennnfonelemrn  12352  hmeontr  12953
  Copyright terms: Public domain W3C validator