| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > forn | GIF version | ||
| Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| forn | ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5276 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ran crn 4675 Fn wfn 5265 –onto→wfo 5268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fo 5276 |
| This theorem is referenced by: dffo2 5501 foima 5502 fodmrnu 5505 f1imacnv 5538 foimacnv 5539 foun 5540 resdif 5543 fococnv2 5547 foelcdmi 5630 cbvfo 5853 cbvexfo 5854 isoini 5886 isoselem 5888 canth 5896 f1opw2 6151 focdmex 6199 bren 6834 en1 6890 fopwdom 6932 mapen 6942 ssenen 6947 phplem4 6951 phplem4on 6963 ordiso2 7136 djuunr 7167 hashfacen 10979 ennnfonelemrn 12732 imasival 13080 imasaddfnlemg 13088 xpsfrn 13124 imasmnd2 13226 imasgrp2 13388 imasrng 13660 imasring 13768 znf1o 14355 znleval 14357 znunit 14363 hmeontr 14727 fsumdvdsmul 15405 |
| Copyright terms: Public domain | W3C validator |