| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > forn | GIF version | ||
| Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| forn | ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5286 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ran crn 4684 Fn wfn 5275 –onto→wfo 5278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fo 5286 |
| This theorem is referenced by: dffo2 5514 foima 5515 fodmrnu 5518 f1imacnv 5551 foimacnv 5552 foun 5553 resdif 5556 fococnv2 5560 foelcdmi 5644 cbvfo 5867 cbvexfo 5868 isoini 5900 isoselem 5902 canth 5910 f1opw2 6165 focdmex 6213 bren 6848 en1 6904 fopwdom 6948 mapen 6958 ssenen 6963 phplem4 6967 phplem4on 6979 ordiso2 7152 djuunr 7183 hashfacen 11003 ennnfonelemrn 12865 imasival 13213 imasaddfnlemg 13221 xpsfrn 13257 imasmnd2 13359 imasgrp2 13521 imasrng 13793 imasring 13901 znf1o 14488 znleval 14490 znunit 14496 hmeontr 14860 fsumdvdsmul 15538 |
| Copyright terms: Public domain | W3C validator |