| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > forn | GIF version | ||
| Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| forn | ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5265 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ran crn 4665 Fn wfn 5254 –onto→wfo 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fo 5265 |
| This theorem is referenced by: dffo2 5487 foima 5488 fodmrnu 5491 f1imacnv 5524 foimacnv 5525 foun 5526 resdif 5529 fococnv2 5533 foelcdmi 5616 cbvfo 5835 cbvexfo 5836 isoini 5868 isoselem 5870 canth 5878 f1opw2 6133 focdmex 6181 bren 6815 en1 6867 fopwdom 6906 mapen 6916 ssenen 6921 phplem4 6925 phplem4on 6937 ordiso2 7110 djuunr 7141 hashfacen 10947 ennnfonelemrn 12663 imasival 13010 imasaddfnlemg 13018 xpsfrn 13054 imasmnd2 13156 imasgrp2 13318 imasrng 13590 imasring 13698 znf1o 14285 znleval 14287 znunit 14293 hmeontr 14657 fsumdvdsmul 15335 |
| Copyright terms: Public domain | W3C validator |