| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeff1o | GIF version | ||
| Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| reeff1o | ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reeff1 11865 | . 2 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | |
| 2 | f1f 5463 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
| 3 | ffn 5407 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ) | |
| 4 | 1, 2, 3 | mp2b 8 | . . 3 ⊢ (exp ↾ ℝ) Fn ℝ |
| 5 | frn 5416 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+) | |
| 6 | 1, 2, 5 | mp2b 8 | . . . 4 ⊢ ran (exp ↾ ℝ) ⊆ ℝ+ |
| 7 | rpre 9735 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ) | |
| 8 | reeff1olem 15007 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
| 9 | 7, 8 | sylan 283 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 10 | 7 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 ∈ ℝ) |
| 11 | rpgt0 9740 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 0 < 𝑧) | |
| 12 | 11 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 0 < 𝑧) |
| 13 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 < e) | |
| 14 | 0xr 8073 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ* | |
| 15 | ere 11835 | . . . . . . . . . . . 12 ⊢ e ∈ ℝ | |
| 16 | 15 | rexri 8084 | . . . . . . . . . . 11 ⊢ e ∈ ℝ* |
| 17 | elioo2 9996 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e))) | |
| 18 | 14, 16, 17 | mp2an 426 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e)) |
| 19 | reeff1oleme 15008 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
| 20 | 18, 19 | sylbir 135 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 21 | 10, 12, 13, 20 | syl3anc 1249 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 22 | 1lt2 9160 | . . . . . . . . . 10 ⊢ 1 < 2 | |
| 23 | egt2lt3 11945 | . . . . . . . . . . 11 ⊢ (2 < e ∧ e < 3) | |
| 24 | 23 | simpli 111 | . . . . . . . . . 10 ⊢ 2 < e |
| 25 | 1re 8025 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 26 | 2re 9060 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 27 | 25, 26, 15 | lttri 8131 | . . . . . . . . . 10 ⊢ ((1 < 2 ∧ 2 < e) → 1 < e) |
| 28 | 22, 24, 27 | mp2an 426 | . . . . . . . . 9 ⊢ 1 < e |
| 29 | 1red 8041 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 1 ∈ ℝ) | |
| 30 | 15 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → e ∈ ℝ) |
| 31 | axltwlin 8094 | . . . . . . . . . 10 ⊢ ((1 ∈ ℝ ∧ e ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) | |
| 32 | 29, 30, 7, 31 | syl3anc 1249 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) |
| 33 | 28, 32 | mpi 15 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ+ → (1 < 𝑧 ∨ 𝑧 < e)) |
| 34 | 9, 21, 33 | mpjaodan 799 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 35 | fvres 5582 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
| 36 | 35 | eqeq1d 2205 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧)) |
| 37 | 36 | rexbiia 2512 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 38 | 34, 37 | sylibr 134 | . . . . . 6 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
| 39 | fvelrnb 5608 | . . . . . . 7 ⊢ ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)) | |
| 40 | 4, 39 | ax-mp 5 | . . . . . 6 ⊢ (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
| 41 | 38, 40 | sylibr 134 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ran (exp ↾ ℝ)) |
| 42 | 41 | ssriv 3187 | . . . 4 ⊢ ℝ+ ⊆ ran (exp ↾ ℝ) |
| 43 | 6, 42 | eqssi 3199 | . . 3 ⊢ ran (exp ↾ ℝ) = ℝ+ |
| 44 | df-fo 5264 | . . 3 ⊢ ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+)) | |
| 45 | 4, 43, 44 | mpbir2an 944 | . 2 ⊢ (exp ↾ ℝ):ℝ–onto→ℝ+ |
| 46 | df-f1o 5265 | . 2 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+)) | |
| 47 | 1, 45, 46 | mpbir2an 944 | 1 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ⊆ wss 3157 class class class wbr 4033 ran crn 4664 ↾ cres 4665 Fn wfn 5253 ⟶wf 5254 –1-1→wf1 5255 –onto→wfo 5256 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 ℝcr 7878 0cc0 7879 1c1 7880 ℝ*cxr 8060 < clt 8061 2c2 9041 3c3 9042 ℝ+crp 9728 (,)cioo 9963 expce 11807 eceu 11808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-pre-suploc 8000 ax-addf 8001 ax-mulf 8002 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-ico 9969 df-icc 9970 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-e 11814 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 df-limced 14892 df-dvap 14893 |
| This theorem is referenced by: reefiso 15013 dfrelog 15096 relogf1o 15097 reeflog 15099 |
| Copyright terms: Public domain | W3C validator |