![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reeff1o | GIF version |
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
reeff1o | ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reeff1 11743 | . 2 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | |
2 | f1f 5440 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
3 | ffn 5384 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ) | |
4 | 1, 2, 3 | mp2b 8 | . . 3 ⊢ (exp ↾ ℝ) Fn ℝ |
5 | frn 5393 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+) | |
6 | 1, 2, 5 | mp2b 8 | . . . 4 ⊢ ran (exp ↾ ℝ) ⊆ ℝ+ |
7 | rpre 9692 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ) | |
8 | reeff1olem 14669 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
9 | 7, 8 | sylan 283 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
10 | 7 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 ∈ ℝ) |
11 | rpgt0 9697 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 0 < 𝑧) | |
12 | 11 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 0 < 𝑧) |
13 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 < e) | |
14 | 0xr 8035 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ* | |
15 | ere 11713 | . . . . . . . . . . . 12 ⊢ e ∈ ℝ | |
16 | 15 | rexri 8046 | . . . . . . . . . . 11 ⊢ e ∈ ℝ* |
17 | elioo2 9953 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e))) | |
18 | 14, 16, 17 | mp2an 426 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e)) |
19 | reeff1oleme 14670 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
20 | 18, 19 | sylbir 135 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
21 | 10, 12, 13, 20 | syl3anc 1249 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
22 | 1lt2 9119 | . . . . . . . . . 10 ⊢ 1 < 2 | |
23 | egt2lt3 11822 | . . . . . . . . . . 11 ⊢ (2 < e ∧ e < 3) | |
24 | 23 | simpli 111 | . . . . . . . . . 10 ⊢ 2 < e |
25 | 1re 7987 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
26 | 2re 9020 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
27 | 25, 26, 15 | lttri 8093 | . . . . . . . . . 10 ⊢ ((1 < 2 ∧ 2 < e) → 1 < e) |
28 | 22, 24, 27 | mp2an 426 | . . . . . . . . 9 ⊢ 1 < e |
29 | 1red 8003 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 1 ∈ ℝ) | |
30 | 15 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → e ∈ ℝ) |
31 | axltwlin 8056 | . . . . . . . . . 10 ⊢ ((1 ∈ ℝ ∧ e ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) | |
32 | 29, 30, 7, 31 | syl3anc 1249 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) |
33 | 28, 32 | mpi 15 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ+ → (1 < 𝑧 ∨ 𝑧 < e)) |
34 | 9, 21, 33 | mpjaodan 799 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
35 | fvres 5558 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
36 | 35 | eqeq1d 2198 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧)) |
37 | 36 | rexbiia 2505 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
38 | 34, 37 | sylibr 134 | . . . . . 6 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
39 | fvelrnb 5584 | . . . . . . 7 ⊢ ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)) | |
40 | 4, 39 | ax-mp 5 | . . . . . 6 ⊢ (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
41 | 38, 40 | sylibr 134 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ran (exp ↾ ℝ)) |
42 | 41 | ssriv 3174 | . . . 4 ⊢ ℝ+ ⊆ ran (exp ↾ ℝ) |
43 | 6, 42 | eqssi 3186 | . . 3 ⊢ ran (exp ↾ ℝ) = ℝ+ |
44 | df-fo 5241 | . . 3 ⊢ ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+)) | |
45 | 4, 43, 44 | mpbir2an 944 | . 2 ⊢ (exp ↾ ℝ):ℝ–onto→ℝ+ |
46 | df-f1o 5242 | . 2 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+)) | |
47 | 1, 45, 46 | mpbir2an 944 | 1 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ∃wrex 2469 ⊆ wss 3144 class class class wbr 4018 ran crn 4645 ↾ cres 4646 Fn wfn 5230 ⟶wf 5231 –1-1→wf1 5232 –onto→wfo 5233 –1-1-onto→wf1o 5234 ‘cfv 5235 (class class class)co 5897 ℝcr 7841 0cc0 7842 1c1 7843 ℝ*cxr 8022 < clt 8023 2c2 9001 3c3 9002 ℝ+crp 9685 (,)cioo 9920 expce 11685 eceu 11686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 ax-caucvg 7962 ax-pre-suploc 7963 ax-addf 7964 ax-mulf 7965 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-disj 3996 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-of 6107 df-1st 6166 df-2nd 6167 df-recs 6331 df-irdg 6396 df-frec 6417 df-1o 6442 df-oadd 6446 df-er 6560 df-map 6677 df-pm 6678 df-en 6768 df-dom 6769 df-fin 6770 df-sup 7014 df-inf 7015 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-n0 9208 df-z 9285 df-uz 9560 df-q 9652 df-rp 9686 df-xneg 9804 df-xadd 9805 df-ioo 9924 df-ico 9926 df-icc 9927 df-fz 10041 df-fzo 10175 df-seqfrec 10479 df-exp 10554 df-fac 10741 df-bc 10763 df-ihash 10791 df-shft 10859 df-cj 10886 df-re 10887 df-im 10888 df-rsqrt 11042 df-abs 11043 df-clim 11322 df-sumdc 11397 df-ef 11691 df-e 11692 df-rest 12749 df-topgen 12768 df-psmet 13873 df-xmet 13874 df-met 13875 df-bl 13876 df-mopn 13877 df-top 13975 df-topon 13988 df-bases 14020 df-ntr 14073 df-cn 14165 df-cnp 14166 df-tx 14230 df-cncf 14535 df-limced 14602 df-dvap 14603 |
This theorem is referenced by: reefiso 14675 dfrelog 14758 relogf1o 14759 reeflog 14761 |
Copyright terms: Public domain | W3C validator |