![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reeff1o | GIF version |
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
reeff1o | ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reeff1 11710 | . 2 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | |
2 | f1f 5423 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
3 | ffn 5367 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ) | |
4 | 1, 2, 3 | mp2b 8 | . . 3 ⊢ (exp ↾ ℝ) Fn ℝ |
5 | frn 5376 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+) | |
6 | 1, 2, 5 | mp2b 8 | . . . 4 ⊢ ran (exp ↾ ℝ) ⊆ ℝ+ |
7 | rpre 9662 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ) | |
8 | reeff1olem 14277 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
9 | 7, 8 | sylan 283 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
10 | 7 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 ∈ ℝ) |
11 | rpgt0 9667 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 0 < 𝑧) | |
12 | 11 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 0 < 𝑧) |
13 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 < e) | |
14 | 0xr 8006 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ* | |
15 | ere 11680 | . . . . . . . . . . . 12 ⊢ e ∈ ℝ | |
16 | 15 | rexri 8017 | . . . . . . . . . . 11 ⊢ e ∈ ℝ* |
17 | elioo2 9923 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e))) | |
18 | 14, 16, 17 | mp2an 426 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e)) |
19 | reeff1oleme 14278 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
20 | 18, 19 | sylbir 135 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
21 | 10, 12, 13, 20 | syl3anc 1238 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
22 | 1lt2 9090 | . . . . . . . . . 10 ⊢ 1 < 2 | |
23 | egt2lt3 11789 | . . . . . . . . . . 11 ⊢ (2 < e ∧ e < 3) | |
24 | 23 | simpli 111 | . . . . . . . . . 10 ⊢ 2 < e |
25 | 1re 7958 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
26 | 2re 8991 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
27 | 25, 26, 15 | lttri 8064 | . . . . . . . . . 10 ⊢ ((1 < 2 ∧ 2 < e) → 1 < e) |
28 | 22, 24, 27 | mp2an 426 | . . . . . . . . 9 ⊢ 1 < e |
29 | 1red 7974 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 1 ∈ ℝ) | |
30 | 15 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → e ∈ ℝ) |
31 | axltwlin 8027 | . . . . . . . . . 10 ⊢ ((1 ∈ ℝ ∧ e ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) | |
32 | 29, 30, 7, 31 | syl3anc 1238 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) |
33 | 28, 32 | mpi 15 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ+ → (1 < 𝑧 ∨ 𝑧 < e)) |
34 | 9, 21, 33 | mpjaodan 798 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
35 | fvres 5541 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
36 | 35 | eqeq1d 2186 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧)) |
37 | 36 | rexbiia 2492 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
38 | 34, 37 | sylibr 134 | . . . . . 6 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
39 | fvelrnb 5565 | . . . . . . 7 ⊢ ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)) | |
40 | 4, 39 | ax-mp 5 | . . . . . 6 ⊢ (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
41 | 38, 40 | sylibr 134 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ran (exp ↾ ℝ)) |
42 | 41 | ssriv 3161 | . . . 4 ⊢ ℝ+ ⊆ ran (exp ↾ ℝ) |
43 | 6, 42 | eqssi 3173 | . . 3 ⊢ ran (exp ↾ ℝ) = ℝ+ |
44 | df-fo 5224 | . . 3 ⊢ ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+)) | |
45 | 4, 43, 44 | mpbir2an 942 | . 2 ⊢ (exp ↾ ℝ):ℝ–onto→ℝ+ |
46 | df-f1o 5225 | . 2 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+)) | |
47 | 1, 45, 46 | mpbir2an 942 | 1 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ⊆ wss 3131 class class class wbr 4005 ran crn 4629 ↾ cres 4630 Fn wfn 5213 ⟶wf 5214 –1-1→wf1 5215 –onto→wfo 5216 –1-1-onto→wf1o 5217 ‘cfv 5218 (class class class)co 5877 ℝcr 7812 0cc0 7813 1c1 7814 ℝ*cxr 7993 < clt 7994 2c2 8972 3c3 8973 ℝ+crp 9655 (,)cioo 9890 expce 11652 eceu 11653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 ax-pre-suploc 7934 ax-addf 7935 ax-mulf 7936 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-disj 3983 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-of 6085 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-map 6652 df-pm 6653 df-en 6743 df-dom 6744 df-fin 6745 df-sup 6985 df-inf 6986 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-xneg 9774 df-xadd 9775 df-ioo 9894 df-ico 9896 df-icc 9897 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-fac 10708 df-bc 10730 df-ihash 10758 df-shft 10826 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-sumdc 11364 df-ef 11658 df-e 11659 df-rest 12695 df-topgen 12714 df-psmet 13532 df-xmet 13533 df-met 13534 df-bl 13535 df-mopn 13536 df-top 13583 df-topon 13596 df-bases 13628 df-ntr 13681 df-cn 13773 df-cnp 13774 df-tx 13838 df-cncf 14143 df-limced 14210 df-dvap 14211 |
This theorem is referenced by: reefiso 14283 dfrelog 14366 relogf1o 14367 reeflog 14369 |
Copyright terms: Public domain | W3C validator |