| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeff1o | GIF version | ||
| Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| reeff1o | ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reeff1 12197 | . 2 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | |
| 2 | f1f 5527 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
| 3 | ffn 5469 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ) | |
| 4 | 1, 2, 3 | mp2b 8 | . . 3 ⊢ (exp ↾ ℝ) Fn ℝ |
| 5 | frn 5478 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+) | |
| 6 | 1, 2, 5 | mp2b 8 | . . . 4 ⊢ ran (exp ↾ ℝ) ⊆ ℝ+ |
| 7 | rpre 9844 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ) | |
| 8 | reeff1olem 15430 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
| 9 | 7, 8 | sylan 283 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 10 | 7 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 ∈ ℝ) |
| 11 | rpgt0 9849 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 0 < 𝑧) | |
| 12 | 11 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 0 < 𝑧) |
| 13 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 < e) | |
| 14 | 0xr 8181 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ* | |
| 15 | ere 12167 | . . . . . . . . . . . 12 ⊢ e ∈ ℝ | |
| 16 | 15 | rexri 8192 | . . . . . . . . . . 11 ⊢ e ∈ ℝ* |
| 17 | elioo2 10105 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e))) | |
| 18 | 14, 16, 17 | mp2an 426 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e)) |
| 19 | reeff1oleme 15431 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
| 20 | 18, 19 | sylbir 135 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 21 | 10, 12, 13, 20 | syl3anc 1271 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 22 | 1lt2 9268 | . . . . . . . . . 10 ⊢ 1 < 2 | |
| 23 | egt2lt3 12277 | . . . . . . . . . . 11 ⊢ (2 < e ∧ e < 3) | |
| 24 | 23 | simpli 111 | . . . . . . . . . 10 ⊢ 2 < e |
| 25 | 1re 8133 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 26 | 2re 9168 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 27 | 25, 26, 15 | lttri 8239 | . . . . . . . . . 10 ⊢ ((1 < 2 ∧ 2 < e) → 1 < e) |
| 28 | 22, 24, 27 | mp2an 426 | . . . . . . . . 9 ⊢ 1 < e |
| 29 | 1red 8149 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 1 ∈ ℝ) | |
| 30 | 15 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → e ∈ ℝ) |
| 31 | axltwlin 8202 | . . . . . . . . . 10 ⊢ ((1 ∈ ℝ ∧ e ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) | |
| 32 | 29, 30, 7, 31 | syl3anc 1271 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) |
| 33 | 28, 32 | mpi 15 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ+ → (1 < 𝑧 ∨ 𝑧 < e)) |
| 34 | 9, 21, 33 | mpjaodan 803 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 35 | fvres 5647 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
| 36 | 35 | eqeq1d 2238 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧)) |
| 37 | 36 | rexbiia 2545 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 38 | 34, 37 | sylibr 134 | . . . . . 6 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
| 39 | fvelrnb 5674 | . . . . . . 7 ⊢ ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)) | |
| 40 | 4, 39 | ax-mp 5 | . . . . . 6 ⊢ (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
| 41 | 38, 40 | sylibr 134 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ran (exp ↾ ℝ)) |
| 42 | 41 | ssriv 3228 | . . . 4 ⊢ ℝ+ ⊆ ran (exp ↾ ℝ) |
| 43 | 6, 42 | eqssi 3240 | . . 3 ⊢ ran (exp ↾ ℝ) = ℝ+ |
| 44 | df-fo 5320 | . . 3 ⊢ ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+)) | |
| 45 | 4, 43, 44 | mpbir2an 948 | . 2 ⊢ (exp ↾ ℝ):ℝ–onto→ℝ+ |
| 46 | df-f1o 5321 | . 2 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+)) | |
| 47 | 1, 45, 46 | mpbir2an 948 | 1 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ⊆ wss 3197 class class class wbr 4082 ran crn 4717 ↾ cres 4718 Fn wfn 5309 ⟶wf 5310 –1-1→wf1 5311 –onto→wfo 5312 –1-1-onto→wf1o 5313 ‘cfv 5314 (class class class)co 5994 ℝcr 7986 0cc0 7987 1c1 7988 ℝ*cxr 8168 < clt 8169 2c2 9149 3c3 9150 ℝ+crp 9837 (,)cioo 10072 expce 12139 eceu 12140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 ax-pre-suploc 8108 ax-addf 8109 ax-mulf 8110 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-of 6208 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-map 6787 df-pm 6788 df-en 6878 df-dom 6879 df-fin 6880 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-xneg 9956 df-xadd 9957 df-ioo 10076 df-ico 10078 df-icc 10079 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-fac 10935 df-bc 10957 df-ihash 10985 df-shft 11312 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 df-ef 12145 df-e 12146 df-rest 13260 df-topgen 13279 df-psmet 14492 df-xmet 14493 df-met 14494 df-bl 14495 df-mopn 14496 df-top 14657 df-topon 14670 df-bases 14702 df-ntr 14755 df-cn 14847 df-cnp 14848 df-tx 14912 df-cncf 15230 df-limced 15315 df-dvap 15316 |
| This theorem is referenced by: reefiso 15436 dfrelog 15519 relogf1o 15520 reeflog 15522 |
| Copyright terms: Public domain | W3C validator |