ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1o GIF version

Theorem reeff1o 14279
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o (exp ↾ ℝ):ℝ–1-1-onto→ℝ+

Proof of Theorem reeff1o
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 11710 . 2 (exp ↾ ℝ):ℝ–1-1→ℝ+
2 f1f 5423 . . . 4 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3 ffn 5367 . . . 4 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ)
41, 2, 3mp2b 8 . . 3 (exp ↾ ℝ) Fn ℝ
5 frn 5376 . . . . 5 ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+)
61, 2, 5mp2b 8 . . . 4 ran (exp ↾ ℝ) ⊆ ℝ+
7 rpre 9662 . . . . . . . . 9 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
8 reeff1olem 14277 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
97, 8sylan 283 . . . . . . . 8 ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
107adantr 276 . . . . . . . . 9 ((𝑧 ∈ ℝ+𝑧 < e) → 𝑧 ∈ ℝ)
11 rpgt0 9667 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → 0 < 𝑧)
1211adantr 276 . . . . . . . . 9 ((𝑧 ∈ ℝ+𝑧 < e) → 0 < 𝑧)
13 simpr 110 . . . . . . . . 9 ((𝑧 ∈ ℝ+𝑧 < e) → 𝑧 < e)
14 0xr 8006 . . . . . . . . . . 11 0 ∈ ℝ*
15 ere 11680 . . . . . . . . . . . 12 e ∈ ℝ
1615rexri 8017 . . . . . . . . . . 11 e ∈ ℝ*
17 elioo2 9923 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 < e)))
1814, 16, 17mp2an 426 . . . . . . . . . 10 (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 < e))
19 reeff1oleme 14278 . . . . . . . . . 10 (𝑧 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
2018, 19sylbir 135 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
2110, 12, 13, 20syl3anc 1238 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
22 1lt2 9090 . . . . . . . . . 10 1 < 2
23 egt2lt3 11789 . . . . . . . . . . 11 (2 < e ∧ e < 3)
2423simpli 111 . . . . . . . . . 10 2 < e
25 1re 7958 . . . . . . . . . . 11 1 ∈ ℝ
26 2re 8991 . . . . . . . . . . 11 2 ∈ ℝ
2725, 26, 15lttri 8064 . . . . . . . . . 10 ((1 < 2 ∧ 2 < e) → 1 < e)
2822, 24, 27mp2an 426 . . . . . . . . 9 1 < e
29 1red 7974 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → 1 ∈ ℝ)
3015a1i 9 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → e ∈ ℝ)
31 axltwlin 8027 . . . . . . . . . 10 ((1 ∈ ℝ ∧ e ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 < e → (1 < 𝑧𝑧 < e)))
3229, 30, 7, 31syl3anc 1238 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (1 < e → (1 < 𝑧𝑧 < e)))
3328, 32mpi 15 . . . . . . . 8 (𝑧 ∈ ℝ+ → (1 < 𝑧𝑧 < e))
349, 21, 33mpjaodan 798 . . . . . . 7 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
35 fvres 5541 . . . . . . . . 9 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
3635eqeq1d 2186 . . . . . . . 8 (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧))
3736rexbiia 2492 . . . . . . 7 (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
3834, 37sylibr 134 . . . . . 6 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
39 fvelrnb 5565 . . . . . . 7 ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧))
404, 39ax-mp 5 . . . . . 6 (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
4138, 40sylibr 134 . . . . 5 (𝑧 ∈ ℝ+𝑧 ∈ ran (exp ↾ ℝ))
4241ssriv 3161 . . . 4 + ⊆ ran (exp ↾ ℝ)
436, 42eqssi 3173 . . 3 ran (exp ↾ ℝ) = ℝ+
44 df-fo 5224 . . 3 ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+))
454, 43, 44mpbir2an 942 . 2 (exp ↾ ℝ):ℝ–onto→ℝ+
46 df-f1o 5225 . 2 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+))
471, 45, 46mpbir2an 942 1 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wrex 2456  wss 3131   class class class wbr 4005  ran crn 4629  cres 4630   Fn wfn 5213  wf 5214  1-1wf1 5215  ontowfo 5216  1-1-ontowf1o 5217  cfv 5218  (class class class)co 5877  cr 7812  0cc0 7813  1c1 7814  *cxr 7993   < clt 7994  2c2 8972  3c3 8973  +crp 9655  (,)cioo 9890  expce 11652  eceu 11653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933  ax-pre-suploc 7934  ax-addf 7935  ax-mulf 7936
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-disj 3983  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-map 6652  df-pm 6653  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-ioo 9894  df-ico 9896  df-icc 9897  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-fac 10708  df-bc 10730  df-ihash 10758  df-shft 10826  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364  df-ef 11658  df-e 11659  df-rest 12695  df-topgen 12714  df-psmet 13532  df-xmet 13533  df-met 13534  df-bl 13535  df-mopn 13536  df-top 13583  df-topon 13596  df-bases 13628  df-ntr 13681  df-cn 13773  df-cnp 13774  df-tx 13838  df-cncf 14143  df-limced 14210  df-dvap 14211
This theorem is referenced by:  reefiso  14283  dfrelog  14366  relogf1o  14367  reeflog  14369
  Copyright terms: Public domain W3C validator