Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reeff1o | GIF version |
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
reeff1o | ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reeff1 11650 | . 2 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | |
2 | f1f 5401 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
3 | ffn 5345 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ) | |
4 | 1, 2, 3 | mp2b 8 | . . 3 ⊢ (exp ↾ ℝ) Fn ℝ |
5 | frn 5354 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+) | |
6 | 1, 2, 5 | mp2b 8 | . . . 4 ⊢ ran (exp ↾ ℝ) ⊆ ℝ+ |
7 | rpre 9604 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ) | |
8 | reeff1olem 13445 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
9 | 7, 8 | sylan 281 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
10 | 7 | adantr 274 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 ∈ ℝ) |
11 | rpgt0 9609 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 0 < 𝑧) | |
12 | 11 | adantr 274 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 0 < 𝑧) |
13 | simpr 109 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 < e) | |
14 | 0xr 7953 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ* | |
15 | ere 11620 | . . . . . . . . . . . 12 ⊢ e ∈ ℝ | |
16 | 15 | rexri 7964 | . . . . . . . . . . 11 ⊢ e ∈ ℝ* |
17 | elioo2 9865 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e))) | |
18 | 14, 16, 17 | mp2an 424 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e)) |
19 | reeff1oleme 13446 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
20 | 18, 19 | sylbir 134 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
21 | 10, 12, 13, 20 | syl3anc 1233 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
22 | 1lt2 9034 | . . . . . . . . . 10 ⊢ 1 < 2 | |
23 | egt2lt3 11729 | . . . . . . . . . . 11 ⊢ (2 < e ∧ e < 3) | |
24 | 23 | simpli 110 | . . . . . . . . . 10 ⊢ 2 < e |
25 | 1re 7906 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
26 | 2re 8935 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
27 | 25, 26, 15 | lttri 8011 | . . . . . . . . . 10 ⊢ ((1 < 2 ∧ 2 < e) → 1 < e) |
28 | 22, 24, 27 | mp2an 424 | . . . . . . . . 9 ⊢ 1 < e |
29 | 1red 7922 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 1 ∈ ℝ) | |
30 | 15 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → e ∈ ℝ) |
31 | axltwlin 7974 | . . . . . . . . . 10 ⊢ ((1 ∈ ℝ ∧ e ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) | |
32 | 29, 30, 7, 31 | syl3anc 1233 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) |
33 | 28, 32 | mpi 15 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ+ → (1 < 𝑧 ∨ 𝑧 < e)) |
34 | 9, 21, 33 | mpjaodan 793 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
35 | fvres 5518 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
36 | 35 | eqeq1d 2179 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧)) |
37 | 36 | rexbiia 2485 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
38 | 34, 37 | sylibr 133 | . . . . . 6 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
39 | fvelrnb 5542 | . . . . . . 7 ⊢ ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)) | |
40 | 4, 39 | ax-mp 5 | . . . . . 6 ⊢ (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
41 | 38, 40 | sylibr 133 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ran (exp ↾ ℝ)) |
42 | 41 | ssriv 3151 | . . . 4 ⊢ ℝ+ ⊆ ran (exp ↾ ℝ) |
43 | 6, 42 | eqssi 3163 | . . 3 ⊢ ran (exp ↾ ℝ) = ℝ+ |
44 | df-fo 5202 | . . 3 ⊢ ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+)) | |
45 | 4, 43, 44 | mpbir2an 937 | . 2 ⊢ (exp ↾ ℝ):ℝ–onto→ℝ+ |
46 | df-f1o 5203 | . 2 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+)) | |
47 | 1, 45, 46 | mpbir2an 937 | 1 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ⊆ wss 3121 class class class wbr 3987 ran crn 4610 ↾ cres 4611 Fn wfn 5191 ⟶wf 5192 –1-1→wf1 5193 –onto→wfo 5194 –1-1-onto→wf1o 5195 ‘cfv 5196 (class class class)co 5850 ℝcr 7760 0cc0 7761 1c1 7762 ℝ*cxr 7940 < clt 7941 2c2 8916 3c3 8917 ℝ+crp 9597 (,)cioo 9832 expce 11592 eceu 11593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 ax-pre-suploc 7882 ax-addf 7883 ax-mulf 7884 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-disj 3965 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-of 6058 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-frec 6367 df-1o 6392 df-oadd 6396 df-er 6509 df-map 6624 df-pm 6625 df-en 6715 df-dom 6716 df-fin 6717 df-sup 6957 df-inf 6958 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-xneg 9716 df-xadd 9717 df-ioo 9836 df-ico 9838 df-icc 9839 df-fz 9953 df-fzo 10086 df-seqfrec 10389 df-exp 10463 df-fac 10647 df-bc 10669 df-ihash 10697 df-shft 10766 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-clim 11229 df-sumdc 11304 df-ef 11598 df-e 11599 df-rest 12568 df-topgen 12587 df-psmet 12740 df-xmet 12741 df-met 12742 df-bl 12743 df-mopn 12744 df-top 12749 df-topon 12762 df-bases 12794 df-ntr 12849 df-cn 12941 df-cnp 12942 df-tx 13006 df-cncf 13311 df-limced 13378 df-dvap 13379 |
This theorem is referenced by: reefiso 13451 dfrelog 13534 relogf1o 13535 reeflog 13537 |
Copyright terms: Public domain | W3C validator |