ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1o GIF version

Theorem reeff1o 15432
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o (exp ↾ ℝ):ℝ–1-1-onto→ℝ+

Proof of Theorem reeff1o
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 12197 . 2 (exp ↾ ℝ):ℝ–1-1→ℝ+
2 f1f 5527 . . . 4 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3 ffn 5469 . . . 4 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ)
41, 2, 3mp2b 8 . . 3 (exp ↾ ℝ) Fn ℝ
5 frn 5478 . . . . 5 ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+)
61, 2, 5mp2b 8 . . . 4 ran (exp ↾ ℝ) ⊆ ℝ+
7 rpre 9844 . . . . . . . . 9 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
8 reeff1olem 15430 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
97, 8sylan 283 . . . . . . . 8 ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
107adantr 276 . . . . . . . . 9 ((𝑧 ∈ ℝ+𝑧 < e) → 𝑧 ∈ ℝ)
11 rpgt0 9849 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → 0 < 𝑧)
1211adantr 276 . . . . . . . . 9 ((𝑧 ∈ ℝ+𝑧 < e) → 0 < 𝑧)
13 simpr 110 . . . . . . . . 9 ((𝑧 ∈ ℝ+𝑧 < e) → 𝑧 < e)
14 0xr 8181 . . . . . . . . . . 11 0 ∈ ℝ*
15 ere 12167 . . . . . . . . . . . 12 e ∈ ℝ
1615rexri 8192 . . . . . . . . . . 11 e ∈ ℝ*
17 elioo2 10105 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 < e)))
1814, 16, 17mp2an 426 . . . . . . . . . 10 (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 < e))
19 reeff1oleme 15431 . . . . . . . . . 10 (𝑧 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
2018, 19sylbir 135 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
2110, 12, 13, 20syl3anc 1271 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
22 1lt2 9268 . . . . . . . . . 10 1 < 2
23 egt2lt3 12277 . . . . . . . . . . 11 (2 < e ∧ e < 3)
2423simpli 111 . . . . . . . . . 10 2 < e
25 1re 8133 . . . . . . . . . . 11 1 ∈ ℝ
26 2re 9168 . . . . . . . . . . 11 2 ∈ ℝ
2725, 26, 15lttri 8239 . . . . . . . . . 10 ((1 < 2 ∧ 2 < e) → 1 < e)
2822, 24, 27mp2an 426 . . . . . . . . 9 1 < e
29 1red 8149 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → 1 ∈ ℝ)
3015a1i 9 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → e ∈ ℝ)
31 axltwlin 8202 . . . . . . . . . 10 ((1 ∈ ℝ ∧ e ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 < e → (1 < 𝑧𝑧 < e)))
3229, 30, 7, 31syl3anc 1271 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (1 < e → (1 < 𝑧𝑧 < e)))
3328, 32mpi 15 . . . . . . . 8 (𝑧 ∈ ℝ+ → (1 < 𝑧𝑧 < e))
349, 21, 33mpjaodan 803 . . . . . . 7 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
35 fvres 5647 . . . . . . . . 9 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
3635eqeq1d 2238 . . . . . . . 8 (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧))
3736rexbiia 2545 . . . . . . 7 (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
3834, 37sylibr 134 . . . . . 6 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
39 fvelrnb 5674 . . . . . . 7 ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧))
404, 39ax-mp 5 . . . . . 6 (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
4138, 40sylibr 134 . . . . 5 (𝑧 ∈ ℝ+𝑧 ∈ ran (exp ↾ ℝ))
4241ssriv 3228 . . . 4 + ⊆ ran (exp ↾ ℝ)
436, 42eqssi 3240 . . 3 ran (exp ↾ ℝ) = ℝ+
44 df-fo 5320 . . 3 ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+))
454, 43, 44mpbir2an 948 . 2 (exp ↾ ℝ):ℝ–onto→ℝ+
46 df-f1o 5321 . 2 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+))
471, 45, 46mpbir2an 948 1 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wrex 2509  wss 3197   class class class wbr 4082  ran crn 4717  cres 4718   Fn wfn 5309  wf 5310  1-1wf1 5311  ontowfo 5312  1-1-ontowf1o 5313  cfv 5314  (class class class)co 5994  cr 7986  0cc0 7987  1c1 7988  *cxr 8168   < clt 8169  2c2 9149  3c3 9150  +crp 9837  (,)cioo 10072  expce 12139  eceu 12140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107  ax-pre-suploc 8108  ax-addf 8109  ax-mulf 8110
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-of 6208  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-map 6787  df-pm 6788  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-xneg 9956  df-xadd 9957  df-ioo 10076  df-ico 10078  df-icc 10079  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-fac 10935  df-bc 10957  df-ihash 10985  df-shft 11312  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851  df-ef 12145  df-e 12146  df-rest 13260  df-topgen 13279  df-psmet 14492  df-xmet 14493  df-met 14494  df-bl 14495  df-mopn 14496  df-top 14657  df-topon 14670  df-bases 14702  df-ntr 14755  df-cn 14847  df-cnp 14848  df-tx 14912  df-cncf 15230  df-limced 15315  df-dvap 15316
This theorem is referenced by:  reefiso  15436  dfrelog  15519  relogf1o  15520  reeflog  15522
  Copyright terms: Public domain W3C validator