ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeff1o GIF version

Theorem reeff1o 14671
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o (exp ↾ ℝ):ℝ–1-1-onto→ℝ+

Proof of Theorem reeff1o
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 11743 . 2 (exp ↾ ℝ):ℝ–1-1→ℝ+
2 f1f 5440 . . . 4 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3 ffn 5384 . . . 4 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ)
41, 2, 3mp2b 8 . . 3 (exp ↾ ℝ) Fn ℝ
5 frn 5393 . . . . 5 ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+)
61, 2, 5mp2b 8 . . . 4 ran (exp ↾ ℝ) ⊆ ℝ+
7 rpre 9692 . . . . . . . . 9 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
8 reeff1olem 14669 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
97, 8sylan 283 . . . . . . . 8 ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
107adantr 276 . . . . . . . . 9 ((𝑧 ∈ ℝ+𝑧 < e) → 𝑧 ∈ ℝ)
11 rpgt0 9697 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → 0 < 𝑧)
1211adantr 276 . . . . . . . . 9 ((𝑧 ∈ ℝ+𝑧 < e) → 0 < 𝑧)
13 simpr 110 . . . . . . . . 9 ((𝑧 ∈ ℝ+𝑧 < e) → 𝑧 < e)
14 0xr 8035 . . . . . . . . . . 11 0 ∈ ℝ*
15 ere 11713 . . . . . . . . . . . 12 e ∈ ℝ
1615rexri 8046 . . . . . . . . . . 11 e ∈ ℝ*
17 elioo2 9953 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 < e)))
1814, 16, 17mp2an 426 . . . . . . . . . 10 (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 < e))
19 reeff1oleme 14670 . . . . . . . . . 10 (𝑧 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
2018, 19sylbir 135 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
2110, 12, 13, 20syl3anc 1249 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
22 1lt2 9119 . . . . . . . . . 10 1 < 2
23 egt2lt3 11822 . . . . . . . . . . 11 (2 < e ∧ e < 3)
2423simpli 111 . . . . . . . . . 10 2 < e
25 1re 7987 . . . . . . . . . . 11 1 ∈ ℝ
26 2re 9020 . . . . . . . . . . 11 2 ∈ ℝ
2725, 26, 15lttri 8093 . . . . . . . . . 10 ((1 < 2 ∧ 2 < e) → 1 < e)
2822, 24, 27mp2an 426 . . . . . . . . 9 1 < e
29 1red 8003 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → 1 ∈ ℝ)
3015a1i 9 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → e ∈ ℝ)
31 axltwlin 8056 . . . . . . . . . 10 ((1 ∈ ℝ ∧ e ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 < e → (1 < 𝑧𝑧 < e)))
3229, 30, 7, 31syl3anc 1249 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (1 < e → (1 < 𝑧𝑧 < e)))
3328, 32mpi 15 . . . . . . . 8 (𝑧 ∈ ℝ+ → (1 < 𝑧𝑧 < e))
349, 21, 33mpjaodan 799 . . . . . . 7 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
35 fvres 5558 . . . . . . . . 9 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
3635eqeq1d 2198 . . . . . . . 8 (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧))
3736rexbiia 2505 . . . . . . 7 (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
3834, 37sylibr 134 . . . . . 6 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
39 fvelrnb 5584 . . . . . . 7 ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧))
404, 39ax-mp 5 . . . . . 6 (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
4138, 40sylibr 134 . . . . 5 (𝑧 ∈ ℝ+𝑧 ∈ ran (exp ↾ ℝ))
4241ssriv 3174 . . . 4 + ⊆ ran (exp ↾ ℝ)
436, 42eqssi 3186 . . 3 ran (exp ↾ ℝ) = ℝ+
44 df-fo 5241 . . 3 ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+))
454, 43, 44mpbir2an 944 . 2 (exp ↾ ℝ):ℝ–onto→ℝ+
46 df-f1o 5242 . 2 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+))
471, 45, 46mpbir2an 944 1 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2160  wrex 2469  wss 3144   class class class wbr 4018  ran crn 4645  cres 4646   Fn wfn 5230  wf 5231  1-1wf1 5232  ontowfo 5233  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5897  cr 7841  0cc0 7842  1c1 7843  *cxr 8022   < clt 8023  2c2 9001  3c3 9002  +crp 9685  (,)cioo 9920  expce 11685  eceu 11686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962  ax-pre-suploc 7963  ax-addf 7964  ax-mulf 7965
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-of 6107  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-map 6677  df-pm 6678  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-xneg 9804  df-xadd 9805  df-ioo 9924  df-ico 9926  df-icc 9927  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-fac 10741  df-bc 10763  df-ihash 10791  df-shft 10859  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397  df-ef 11691  df-e 11692  df-rest 12749  df-topgen 12768  df-psmet 13873  df-xmet 13874  df-met 13875  df-bl 13876  df-mopn 13877  df-top 13975  df-topon 13988  df-bases 14020  df-ntr 14073  df-cn 14165  df-cnp 14166  df-tx 14230  df-cncf 14535  df-limced 14602  df-dvap 14603
This theorem is referenced by:  reefiso  14675  dfrelog  14758  relogf1o  14759  reeflog  14761
  Copyright terms: Public domain W3C validator