| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeff1o | GIF version | ||
| Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| reeff1o | ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reeff1 12081 | . 2 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | |
| 2 | f1f 5492 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
| 3 | ffn 5434 | . . . 4 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ) | |
| 4 | 1, 2, 3 | mp2b 8 | . . 3 ⊢ (exp ↾ ℝ) Fn ℝ |
| 5 | frn 5443 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+) | |
| 6 | 1, 2, 5 | mp2b 8 | . . . 4 ⊢ ran (exp ↾ ℝ) ⊆ ℝ+ |
| 7 | rpre 9797 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ) | |
| 8 | reeff1olem 15313 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
| 9 | 7, 8 | sylan 283 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 10 | 7 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 ∈ ℝ) |
| 11 | rpgt0 9802 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 0 < 𝑧) | |
| 12 | 11 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 0 < 𝑧) |
| 13 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → 𝑧 < e) | |
| 14 | 0xr 8134 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ* | |
| 15 | ere 12051 | . . . . . . . . . . . 12 ⊢ e ∈ ℝ | |
| 16 | 15 | rexri 8145 | . . . . . . . . . . 11 ⊢ e ∈ ℝ* |
| 17 | elioo2 10058 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ* ∧ e ∈ ℝ*) → (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e))) | |
| 18 | 14, 16, 17 | mp2an 426 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e)) |
| 19 | reeff1oleme 15314 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) | |
| 20 | 18, 19 | sylbir 135 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 21 | 10, 12, 13, 20 | syl3anc 1250 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ+ ∧ 𝑧 < e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 22 | 1lt2 9221 | . . . . . . . . . 10 ⊢ 1 < 2 | |
| 23 | egt2lt3 12161 | . . . . . . . . . . 11 ⊢ (2 < e ∧ e < 3) | |
| 24 | 23 | simpli 111 | . . . . . . . . . 10 ⊢ 2 < e |
| 25 | 1re 8086 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 26 | 2re 9121 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 27 | 25, 26, 15 | lttri 8192 | . . . . . . . . . 10 ⊢ ((1 < 2 ∧ 2 < e) → 1 < e) |
| 28 | 22, 24, 27 | mp2an 426 | . . . . . . . . 9 ⊢ 1 < e |
| 29 | 1red 8102 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → 1 ∈ ℝ) | |
| 30 | 15 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℝ+ → e ∈ ℝ) |
| 31 | axltwlin 8155 | . . . . . . . . . 10 ⊢ ((1 ∈ ℝ ∧ e ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) | |
| 32 | 29, 30, 7, 31 | syl3anc 1250 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℝ+ → (1 < e → (1 < 𝑧 ∨ 𝑧 < e))) |
| 33 | 28, 32 | mpi 15 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ+ → (1 < 𝑧 ∨ 𝑧 < e)) |
| 34 | 9, 21, 33 | mpjaodan 800 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 35 | fvres 5612 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
| 36 | 35 | eqeq1d 2215 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧)) |
| 37 | 36 | rexbiia 2522 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧) |
| 38 | 34, 37 | sylibr 134 | . . . . . 6 ⊢ (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
| 39 | fvelrnb 5638 | . . . . . . 7 ⊢ ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)) | |
| 40 | 4, 39 | ax-mp 5 | . . . . . 6 ⊢ (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧) |
| 41 | 38, 40 | sylibr 134 | . . . . 5 ⊢ (𝑧 ∈ ℝ+ → 𝑧 ∈ ran (exp ↾ ℝ)) |
| 42 | 41 | ssriv 3201 | . . . 4 ⊢ ℝ+ ⊆ ran (exp ↾ ℝ) |
| 43 | 6, 42 | eqssi 3213 | . . 3 ⊢ ran (exp ↾ ℝ) = ℝ+ |
| 44 | df-fo 5285 | . . 3 ⊢ ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+)) | |
| 45 | 4, 43, 44 | mpbir2an 945 | . 2 ⊢ (exp ↾ ℝ):ℝ–onto→ℝ+ |
| 46 | df-f1o 5286 | . 2 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+)) | |
| 47 | 1, 45, 46 | mpbir2an 945 | 1 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 ⊆ wss 3170 class class class wbr 4050 ran crn 4683 ↾ cres 4684 Fn wfn 5274 ⟶wf 5275 –1-1→wf1 5276 –onto→wfo 5277 –1-1-onto→wf1o 5278 ‘cfv 5279 (class class class)co 5956 ℝcr 7939 0cc0 7940 1c1 7941 ℝ*cxr 8121 < clt 8122 2c2 9102 3c3 9103 ℝ+crp 9790 (,)cioo 10025 expce 12023 eceu 12024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 ax-pre-suploc 8061 ax-addf 8062 ax-mulf 8063 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-disj 4027 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-of 6170 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-frec 6489 df-1o 6514 df-oadd 6518 df-er 6632 df-map 6749 df-pm 6750 df-en 6840 df-dom 6841 df-fin 6842 df-sup 7100 df-inf 7101 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-xneg 9909 df-xadd 9910 df-ioo 10029 df-ico 10031 df-icc 10032 df-fz 10146 df-fzo 10280 df-seqfrec 10610 df-exp 10701 df-fac 10888 df-bc 10910 df-ihash 10938 df-shft 11196 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-clim 11660 df-sumdc 11735 df-ef 12029 df-e 12030 df-rest 13143 df-topgen 13162 df-psmet 14375 df-xmet 14376 df-met 14377 df-bl 14378 df-mopn 14379 df-top 14540 df-topon 14553 df-bases 14585 df-ntr 14638 df-cn 14730 df-cnp 14731 df-tx 14795 df-cncf 15113 df-limced 15198 df-dvap 15199 |
| This theorem is referenced by: reefiso 15319 dfrelog 15402 relogf1o 15403 reeflog 15405 |
| Copyright terms: Public domain | W3C validator |