ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o2 GIF version

Theorem dff1o2 5447
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dff1o2
StepHypRef Expression
1 df-f1o 5205 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 df-f1 5203 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
3 df-fo 5204 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
42, 3anbi12i 457 . . 3 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
5 anass 399 . . . 4 (((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))))
6 3anan12 985 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
76anbi1i 455 . . . . 5 (((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴𝐵) ↔ ((Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴𝐵))
8 eqimss 3201 . . . . . . . 8 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
9 df-f 5202 . . . . . . . . 9 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
109biimpri 132 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → 𝐹:𝐴𝐵)
118, 10sylan2 284 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
12113adant2 1011 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
1312pm4.71i 389 . . . . 5 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴𝐵))
14 ancom 264 . . . . 5 ((𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ ((Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴𝐵))
157, 13, 143bitr4ri 212 . . . 4 ((𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
165, 15bitri 183 . . 3 (((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
174, 16bitri 183 . 2 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
181, 17bitri 183 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 973   = wceq 1348  wss 3121  ccnv 4610  ran crn 4612  Fun wfun 5192   Fn wfn 5193  wf 5194  1-1wf1 5195  ontowfo 5196  1-1-ontowf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205
This theorem is referenced by:  dff1o3  5448  dff1o4  5450  f1orn  5452  dif1en  6857  fiintim  6906
  Copyright terms: Public domain W3C validator