Proof of Theorem dff1o2
Step | Hyp | Ref
| Expression |
1 | | df-f1o 5215 |
. 2
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
2 | | df-f1 5213 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) |
3 | | df-fo 5214 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
4 | 2, 3 | anbi12i 460 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ ((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) |
5 | | anass 401 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹:𝐴⟶𝐵 ∧ (Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))) |
6 | | 3anan12 990 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) |
7 | 6 | anbi1i 458 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴⟶𝐵) ↔ ((Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴⟶𝐵)) |
8 | | eqimss 3207 |
. . . . . . . 8
⊢ (ran
𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) |
9 | | df-f 5212 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
10 | 9 | biimpri 133 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) |
11 | 8, 10 | sylan2 286 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴⟶𝐵) |
12 | 11 | 3adant2 1016 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴⟶𝐵) |
13 | 12 | pm4.71i 391 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴⟶𝐵)) |
14 | | ancom 266 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ (Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ ((Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴⟶𝐵)) |
15 | 7, 13, 14 | 3bitr4ri 213 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ (Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) |
16 | 5, 15 | bitri 184 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) |
17 | 4, 16 | bitri 184 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) |
18 | 1, 17 | bitri 184 |
1
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) |