Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fof | GIF version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3201 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | 1 | anim2i 340 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
3 | df-fo 5204 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | df-f 5202 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3imtr4i 200 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ⊆ wss 3121 ran crn 4612 Fn wfn 5193 ⟶wf 5194 –onto→wfo 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-f 5202 df-fo 5204 |
This theorem is referenced by: fofun 5421 fofn 5422 dffo2 5424 foima 5425 resdif 5464 ffoss 5474 fconstfvm 5714 cocan2 5767 foeqcnvco 5769 fornex 6094 algrflem 6208 algrflemg 6209 tposf2 6247 mapsn 6668 ssdomg 6756 fopwdom 6814 fidcenumlemrks 6930 fidcenumlemr 6932 ctmlemr 7085 ctm 7086 ctssdclemn0 7087 ctssdccl 7088 ctssdc 7090 enumctlemm 7091 enumct 7092 fodjuomnilemdc 7120 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 suplocexprlemdisj 7682 suplocexprlemub 7685 focdmex 10721 ennnfonelemdc 12354 ennnfonelemg 12358 ennnfonelemp1 12361 ennnfonelemhdmp1 12364 ennnfonelemkh 12367 ennnfonelemhf1o 12368 ennnfonelemex 12369 ennnfonelemhom 12370 ctinfomlemom 12382 ctinf 12385 ctiunctlemudc 12392 ctiunctlemf 12393 omctfn 12398 dvrecap 13471 subctctexmid 14034 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |