ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fof GIF version

Theorem fof 5410
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fof (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)

Proof of Theorem fof
StepHypRef Expression
1 eqimss 3196 . . 3 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
21anim2i 340 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
3 df-fo 5194 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
4 df-f 5192 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
52, 3, 43imtr4i 200 1 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wss 3116  ran crn 4605   Fn wfn 5183  wf 5184  ontowfo 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-f 5192  df-fo 5194
This theorem is referenced by:  fofun  5411  fofn  5412  dffo2  5414  foima  5415  resdif  5454  ffoss  5464  fconstfvm  5703  cocan2  5756  foeqcnvco  5758  fornex  6083  algrflem  6197  algrflemg  6198  tposf2  6236  mapsn  6656  ssdomg  6744  fopwdom  6802  fidcenumlemrks  6918  fidcenumlemr  6920  ctmlemr  7073  ctm  7074  ctssdclemn0  7075  ctssdccl  7076  ctssdc  7078  enumctlemm  7079  enumct  7080  fodjuomnilemdc  7108  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  suplocexprlemdisj  7661  suplocexprlemub  7664  focdmex  10700  ennnfonelemdc  12332  ennnfonelemg  12336  ennnfonelemp1  12339  ennnfonelemhdmp1  12342  ennnfonelemkh  12345  ennnfonelemhf1o  12346  ennnfonelemex  12347  ennnfonelemhom  12348  ctinfomlemom  12360  ctinf  12363  ctiunctlemudc  12370  ctiunctlemf  12371  omctfn  12376  dvrecap  13317  subctctexmid  13881  pw1nct  13883
  Copyright terms: Public domain W3C validator