ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fof GIF version

Theorem fof 5524
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fof (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)

Proof of Theorem fof
StepHypRef Expression
1 eqimss 3258 . . 3 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
21anim2i 342 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
3 df-fo 5300 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
4 df-f 5298 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
52, 3, 43imtr4i 201 1 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wss 3177  ran crn 4697   Fn wfn 5289  wf 5290  ontowfo 5292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-in 3183  df-ss 3190  df-f 5298  df-fo 5300
This theorem is referenced by:  fofun  5525  fofn  5526  dffo2  5528  foima  5529  resdif  5570  ffoss  5580  fconstfvm  5830  cocan2  5885  foeqcnvco  5887  focdmex  6230  algrflem  6345  algrflemg  6346  tposf2  6384  mapsn  6807  ssdomg  6900  fopwdom  6965  fidcenumlemrks  7088  fidcenumlemr  7090  ctmlemr  7243  ctm  7244  ctssdclemn0  7245  ctssdccl  7246  ctssdc  7248  enumctlemm  7249  enumct  7250  fodjuomnilemdc  7279  exmidfodomrlemr  7348  exmidfodomrlemrALT  7349  suplocexprlemdisj  7875  suplocexprlemub  7878  wrdsymb  11065  ennnfonelemdc  12936  ennnfonelemg  12940  ennnfonelemp1  12943  ennnfonelemhdmp1  12946  ennnfonelemkh  12949  ennnfonelemhf1o  12950  ennnfonelemex  12951  ennnfonelemhom  12952  ctinfomlemom  12964  ctinf  12967  ctiunctlemudc  12974  ctiunctlemf  12975  omctfn  12980  imasival  13305  imasbas  13306  imasplusg  13307  imasmulr  13308  imasaddfnlemg  13313  imasaddvallemg  13314  imasaddflemg  13315  imasmnd2  13451  imasgrp2  13613  mhmid  13618  mhmmnd  13619  mhmfmhm  13620  ghmgrp  13621  ghmfghm  13829  imasring  13993  znunit  14588  znrrg  14589  dvrecap  15352  gausslemma2dlem1f1o  15704  subctctexmid  16277  pw1nct  16280
  Copyright terms: Public domain W3C validator