| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3278 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 342 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 5324 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 5322 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 201 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ⊆ wss 3197 ran crn 4720 Fn wfn 5313 ⟶wf 5314 –onto→wfo 5316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 df-fo 5324 |
| This theorem is referenced by: fofun 5551 fofn 5552 dffo2 5554 foima 5555 resdif 5596 ffoss 5606 fconstfvm 5861 cocan2 5918 foeqcnvco 5920 focdmex 6266 algrflem 6381 algrflemg 6382 tposf2 6420 mapsn 6845 ssdomg 6938 fopwdom 7005 fidcenumlemrks 7128 fidcenumlemr 7130 ctmlemr 7283 ctm 7284 ctssdclemn0 7285 ctssdccl 7286 ctssdc 7288 enumctlemm 7289 enumct 7290 fodjuomnilemdc 7319 exmidfodomrlemr 7388 exmidfodomrlemrALT 7389 suplocexprlemdisj 7915 suplocexprlemub 7918 wrdsymb 11107 ennnfonelemdc 12978 ennnfonelemg 12982 ennnfonelemp1 12985 ennnfonelemhdmp1 12988 ennnfonelemkh 12991 ennnfonelemhf1o 12992 ennnfonelemex 12993 ennnfonelemhom 12994 ctinfomlemom 13006 ctinf 13009 ctiunctlemudc 13016 ctiunctlemf 13017 omctfn 13022 imasival 13347 imasbas 13348 imasplusg 13349 imasmulr 13350 imasaddfnlemg 13355 imasaddvallemg 13356 imasaddflemg 13357 imasmnd2 13493 imasgrp2 13655 mhmid 13660 mhmmnd 13661 mhmfmhm 13662 ghmgrp 13663 ghmfghm 13871 imasring 14035 znunit 14631 znrrg 14632 dvrecap 15395 gausslemma2dlem1f1o 15747 subctctexmid 16395 pw1nct 16398 |
| Copyright terms: Public domain | W3C validator |