Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fof | GIF version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3201 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | 1 | anim2i 340 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
3 | df-fo 5202 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | df-f 5200 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3imtr4i 200 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ⊆ wss 3121 ran crn 4610 Fn wfn 5191 ⟶wf 5192 –onto→wfo 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-f 5200 df-fo 5202 |
This theorem is referenced by: fofun 5419 fofn 5420 dffo2 5422 foima 5423 resdif 5462 ffoss 5472 fconstfvm 5711 cocan2 5764 foeqcnvco 5766 fornex 6091 algrflem 6205 algrflemg 6206 tposf2 6244 mapsn 6664 ssdomg 6752 fopwdom 6810 fidcenumlemrks 6926 fidcenumlemr 6928 ctmlemr 7081 ctm 7082 ctssdclemn0 7083 ctssdccl 7084 ctssdc 7086 enumctlemm 7087 enumct 7088 fodjuomnilemdc 7116 exmidfodomrlemr 7166 exmidfodomrlemrALT 7167 suplocexprlemdisj 7669 suplocexprlemub 7672 focdmex 10708 ennnfonelemdc 12341 ennnfonelemg 12345 ennnfonelemp1 12348 ennnfonelemhdmp1 12351 ennnfonelemkh 12354 ennnfonelemhf1o 12355 ennnfonelemex 12356 ennnfonelemhom 12357 ctinfomlemom 12369 ctinf 12372 ctiunctlemudc 12379 ctiunctlemf 12380 omctfn 12385 dvrecap 13392 subctctexmid 13956 pw1nct 13958 |
Copyright terms: Public domain | W3C validator |