| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3237 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 342 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 5264 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 5262 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 201 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ⊆ wss 3157 ran crn 4664 Fn wfn 5253 ⟶wf 5254 –onto→wfo 5256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5262 df-fo 5264 |
| This theorem is referenced by: fofun 5481 fofn 5482 dffo2 5484 foima 5485 resdif 5526 ffoss 5536 fconstfvm 5780 cocan2 5835 foeqcnvco 5837 focdmex 6172 algrflem 6287 algrflemg 6288 tposf2 6326 mapsn 6749 ssdomg 6837 fopwdom 6897 fidcenumlemrks 7019 fidcenumlemr 7021 ctmlemr 7174 ctm 7175 ctssdclemn0 7176 ctssdccl 7177 ctssdc 7179 enumctlemm 7180 enumct 7181 fodjuomnilemdc 7210 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 suplocexprlemdisj 7787 suplocexprlemub 7790 wrdsymb 10962 ennnfonelemdc 12616 ennnfonelemg 12620 ennnfonelemp1 12623 ennnfonelemhdmp1 12626 ennnfonelemkh 12629 ennnfonelemhf1o 12630 ennnfonelemex 12631 ennnfonelemhom 12632 ctinfomlemom 12644 ctinf 12647 ctiunctlemudc 12654 ctiunctlemf 12655 omctfn 12660 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 imasaddfnlemg 12957 imasaddvallemg 12958 imasaddflemg 12959 imasgrp2 13240 mhmid 13245 mhmmnd 13246 mhmfmhm 13247 ghmgrp 13248 ghmfghm 13456 imasring 13620 znunit 14215 znrrg 14216 dvrecap 14949 gausslemma2dlem1f1o 15301 subctctexmid 15645 pw1nct 15647 |
| Copyright terms: Public domain | W3C validator |