Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fof | GIF version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3196 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | 1 | anim2i 340 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
3 | df-fo 5194 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | df-f 5192 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3imtr4i 200 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ⊆ wss 3116 ran crn 4605 Fn wfn 5183 ⟶wf 5184 –onto→wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-f 5192 df-fo 5194 |
This theorem is referenced by: fofun 5411 fofn 5412 dffo2 5414 foima 5415 resdif 5454 ffoss 5464 fconstfvm 5703 cocan2 5756 foeqcnvco 5758 fornex 6083 algrflem 6197 algrflemg 6198 tposf2 6236 mapsn 6656 ssdomg 6744 fopwdom 6802 fidcenumlemrks 6918 fidcenumlemr 6920 ctmlemr 7073 ctm 7074 ctssdclemn0 7075 ctssdccl 7076 ctssdc 7078 enumctlemm 7079 enumct 7080 fodjuomnilemdc 7108 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 suplocexprlemdisj 7661 suplocexprlemub 7664 focdmex 10700 ennnfonelemdc 12332 ennnfonelemg 12336 ennnfonelemp1 12339 ennnfonelemhdmp1 12342 ennnfonelemkh 12345 ennnfonelemhf1o 12346 ennnfonelemex 12347 ennnfonelemhom 12348 ctinfomlemom 12360 ctinf 12363 ctiunctlemudc 12370 ctiunctlemf 12371 omctfn 12376 dvrecap 13317 subctctexmid 13881 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |