| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3248 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 342 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 5282 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 5280 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 201 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ⊆ wss 3167 ran crn 4680 Fn wfn 5271 ⟶wf 5272 –onto→wfo 5274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 df-f 5280 df-fo 5282 |
| This theorem is referenced by: fofun 5506 fofn 5507 dffo2 5509 foima 5510 resdif 5551 ffoss 5561 fconstfvm 5809 cocan2 5864 foeqcnvco 5866 focdmex 6207 algrflem 6322 algrflemg 6323 tposf2 6361 mapsn 6784 ssdomg 6877 fopwdom 6940 fidcenumlemrks 7062 fidcenumlemr 7064 ctmlemr 7217 ctm 7218 ctssdclemn0 7219 ctssdccl 7220 ctssdc 7222 enumctlemm 7223 enumct 7224 fodjuomnilemdc 7253 exmidfodomrlemr 7317 exmidfodomrlemrALT 7318 suplocexprlemdisj 7840 suplocexprlemub 7843 wrdsymb 11028 ennnfonelemdc 12814 ennnfonelemg 12818 ennnfonelemp1 12821 ennnfonelemhdmp1 12824 ennnfonelemkh 12827 ennnfonelemhf1o 12828 ennnfonelemex 12829 ennnfonelemhom 12830 ctinfomlemom 12842 ctinf 12845 ctiunctlemudc 12852 ctiunctlemf 12853 omctfn 12858 imasival 13182 imasbas 13183 imasplusg 13184 imasmulr 13185 imasaddfnlemg 13190 imasaddvallemg 13191 imasaddflemg 13192 imasmnd2 13328 imasgrp2 13490 mhmid 13495 mhmmnd 13496 mhmfmhm 13497 ghmgrp 13498 ghmfghm 13706 imasring 13870 znunit 14465 znrrg 14466 dvrecap 15229 gausslemma2dlem1f1o 15581 subctctexmid 16011 pw1nct 16014 |
| Copyright terms: Public domain | W3C validator |