| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3238 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 342 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 5265 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 5263 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 201 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ⊆ wss 3157 ran crn 4665 Fn wfn 5254 ⟶wf 5255 –onto→wfo 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 df-fo 5265 |
| This theorem is referenced by: fofun 5482 fofn 5483 dffo2 5485 foima 5486 resdif 5527 ffoss 5537 fconstfvm 5781 cocan2 5836 foeqcnvco 5838 focdmex 6174 algrflem 6289 algrflemg 6290 tposf2 6328 mapsn 6751 ssdomg 6839 fopwdom 6899 fidcenumlemrks 7021 fidcenumlemr 7023 ctmlemr 7176 ctm 7177 ctssdclemn0 7178 ctssdccl 7179 ctssdc 7181 enumctlemm 7182 enumct 7183 fodjuomnilemdc 7212 exmidfodomrlemr 7272 exmidfodomrlemrALT 7273 suplocexprlemdisj 7790 suplocexprlemub 7793 wrdsymb 10965 ennnfonelemdc 12627 ennnfonelemg 12631 ennnfonelemp1 12634 ennnfonelemhdmp1 12637 ennnfonelemkh 12640 ennnfonelemhf1o 12641 ennnfonelemex 12642 ennnfonelemhom 12643 ctinfomlemom 12655 ctinf 12658 ctiunctlemudc 12665 ctiunctlemf 12666 omctfn 12671 imasival 12975 imasbas 12976 imasplusg 12977 imasmulr 12978 imasaddfnlemg 12983 imasaddvallemg 12984 imasaddflemg 12985 imasgrp2 13266 mhmid 13271 mhmmnd 13272 mhmfmhm 13273 ghmgrp 13274 ghmfghm 13482 imasring 13646 znunit 14241 znrrg 14242 dvrecap 14975 gausslemma2dlem1f1o 15327 subctctexmid 15671 pw1nct 15674 |
| Copyright terms: Public domain | W3C validator |