| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3258 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 342 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 5300 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 5298 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 201 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ⊆ wss 3177 ran crn 4697 Fn wfn 5289 ⟶wf 5290 –onto→wfo 5292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 df-f 5298 df-fo 5300 |
| This theorem is referenced by: fofun 5525 fofn 5526 dffo2 5528 foima 5529 resdif 5570 ffoss 5580 fconstfvm 5830 cocan2 5885 foeqcnvco 5887 focdmex 6230 algrflem 6345 algrflemg 6346 tposf2 6384 mapsn 6807 ssdomg 6900 fopwdom 6965 fidcenumlemrks 7088 fidcenumlemr 7090 ctmlemr 7243 ctm 7244 ctssdclemn0 7245 ctssdccl 7246 ctssdc 7248 enumctlemm 7249 enumct 7250 fodjuomnilemdc 7279 exmidfodomrlemr 7348 exmidfodomrlemrALT 7349 suplocexprlemdisj 7875 suplocexprlemub 7878 wrdsymb 11065 ennnfonelemdc 12936 ennnfonelemg 12940 ennnfonelemp1 12943 ennnfonelemhdmp1 12946 ennnfonelemkh 12949 ennnfonelemhf1o 12950 ennnfonelemex 12951 ennnfonelemhom 12952 ctinfomlemom 12964 ctinf 12967 ctiunctlemudc 12974 ctiunctlemf 12975 omctfn 12980 imasival 13305 imasbas 13306 imasplusg 13307 imasmulr 13308 imasaddfnlemg 13313 imasaddvallemg 13314 imasaddflemg 13315 imasmnd2 13451 imasgrp2 13613 mhmid 13618 mhmmnd 13619 mhmfmhm 13620 ghmgrp 13621 ghmfghm 13829 imasring 13993 znunit 14588 znrrg 14589 dvrecap 15352 gausslemma2dlem1f1o 15704 subctctexmid 16277 pw1nct 16280 |
| Copyright terms: Public domain | W3C validator |