ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fof GIF version

Theorem fof 5550
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fof (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)

Proof of Theorem fof
StepHypRef Expression
1 eqimss 3278 . . 3 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
21anim2i 342 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
3 df-fo 5324 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
4 df-f 5322 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
52, 3, 43imtr4i 201 1 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wss 3197  ran crn 4720   Fn wfn 5313  wf 5314  ontowfo 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-f 5322  df-fo 5324
This theorem is referenced by:  fofun  5551  fofn  5552  dffo2  5554  foima  5555  resdif  5596  ffoss  5606  fconstfvm  5861  cocan2  5918  foeqcnvco  5920  focdmex  6266  algrflem  6381  algrflemg  6382  tposf2  6420  mapsn  6845  ssdomg  6938  fopwdom  7005  fidcenumlemrks  7128  fidcenumlemr  7130  ctmlemr  7283  ctm  7284  ctssdclemn0  7285  ctssdccl  7286  ctssdc  7288  enumctlemm  7289  enumct  7290  fodjuomnilemdc  7319  exmidfodomrlemr  7388  exmidfodomrlemrALT  7389  suplocexprlemdisj  7915  suplocexprlemub  7918  wrdsymb  11107  ennnfonelemdc  12978  ennnfonelemg  12982  ennnfonelemp1  12985  ennnfonelemhdmp1  12988  ennnfonelemkh  12991  ennnfonelemhf1o  12992  ennnfonelemex  12993  ennnfonelemhom  12994  ctinfomlemom  13006  ctinf  13009  ctiunctlemudc  13016  ctiunctlemf  13017  omctfn  13022  imasival  13347  imasbas  13348  imasplusg  13349  imasmulr  13350  imasaddfnlemg  13355  imasaddvallemg  13356  imasaddflemg  13357  imasmnd2  13493  imasgrp2  13655  mhmid  13660  mhmmnd  13661  mhmfmhm  13662  ghmgrp  13663  ghmfghm  13871  imasring  14035  znunit  14631  znrrg  14632  dvrecap  15395  gausslemma2dlem1f1o  15747  subctctexmid  16395  pw1nct  16398
  Copyright terms: Public domain W3C validator