ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fof GIF version

Theorem fof 5476
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fof (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)

Proof of Theorem fof
StepHypRef Expression
1 eqimss 3233 . . 3 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
21anim2i 342 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
3 df-fo 5260 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
4 df-f 5258 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
52, 3, 43imtr4i 201 1 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wss 3153  ran crn 4660   Fn wfn 5249  wf 5250  ontowfo 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-f 5258  df-fo 5260
This theorem is referenced by:  fofun  5477  fofn  5478  dffo2  5480  foima  5481  resdif  5522  ffoss  5532  fconstfvm  5776  cocan2  5831  foeqcnvco  5833  focdmex  6167  algrflem  6282  algrflemg  6283  tposf2  6321  mapsn  6744  ssdomg  6832  fopwdom  6892  fidcenumlemrks  7012  fidcenumlemr  7014  ctmlemr  7167  ctm  7168  ctssdclemn0  7169  ctssdccl  7170  ctssdc  7172  enumctlemm  7173  enumct  7174  fodjuomnilemdc  7203  exmidfodomrlemr  7262  exmidfodomrlemrALT  7263  suplocexprlemdisj  7780  suplocexprlemub  7783  wrdsymb  10941  ennnfonelemdc  12556  ennnfonelemg  12560  ennnfonelemp1  12563  ennnfonelemhdmp1  12566  ennnfonelemkh  12569  ennnfonelemhf1o  12570  ennnfonelemex  12571  ennnfonelemhom  12572  ctinfomlemom  12584  ctinf  12587  ctiunctlemudc  12594  ctiunctlemf  12595  omctfn  12600  imasival  12889  imasbas  12890  imasplusg  12891  imasmulr  12892  imasaddfnlemg  12897  imasaddvallemg  12898  imasaddflemg  12899  imasgrp2  13180  mhmid  13185  mhmmnd  13186  mhmfmhm  13187  ghmgrp  13188  ghmfghm  13396  imasring  13560  znunit  14147  znrrg  14148  dvrecap  14862  gausslemma2dlem1f1o  15176  subctctexmid  15491  pw1nct  15493
  Copyright terms: Public domain W3C validator