| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fof | GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3238 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 342 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 5265 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 5263 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 201 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ⊆ wss 3157 ran crn 4665 Fn wfn 5254 ⟶wf 5255 –onto→wfo 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5263 df-fo 5265 |
| This theorem is referenced by: fofun 5484 fofn 5485 dffo2 5487 foima 5488 resdif 5529 ffoss 5539 fconstfvm 5783 cocan2 5838 foeqcnvco 5840 focdmex 6181 algrflem 6296 algrflemg 6297 tposf2 6335 mapsn 6758 ssdomg 6846 fopwdom 6906 fidcenumlemrks 7028 fidcenumlemr 7030 ctmlemr 7183 ctm 7184 ctssdclemn0 7185 ctssdccl 7186 ctssdc 7188 enumctlemm 7189 enumct 7190 fodjuomnilemdc 7219 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 suplocexprlemdisj 7806 suplocexprlemub 7809 wrdsymb 10981 ennnfonelemdc 12643 ennnfonelemg 12647 ennnfonelemp1 12650 ennnfonelemhdmp1 12653 ennnfonelemkh 12656 ennnfonelemhf1o 12657 ennnfonelemex 12658 ennnfonelemhom 12659 ctinfomlemom 12671 ctinf 12674 ctiunctlemudc 12681 ctiunctlemf 12682 omctfn 12687 imasival 13010 imasbas 13011 imasplusg 13012 imasmulr 13013 imasaddfnlemg 13018 imasaddvallemg 13019 imasaddflemg 13020 imasmnd2 13156 imasgrp2 13318 mhmid 13323 mhmmnd 13324 mhmfmhm 13325 ghmgrp 13326 ghmfghm 13534 imasring 13698 znunit 14293 znrrg 14294 dvrecap 15035 gausslemma2dlem1f1o 15387 subctctexmid 15733 pw1nct 15736 |
| Copyright terms: Public domain | W3C validator |