ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fof GIF version

Theorem fof 5477
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fof (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)

Proof of Theorem fof
StepHypRef Expression
1 eqimss 3234 . . 3 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
21anim2i 342 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
3 df-fo 5261 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
4 df-f 5259 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
52, 3, 43imtr4i 201 1 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wss 3154  ran crn 4661   Fn wfn 5250  wf 5251  ontowfo 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3160  df-ss 3167  df-f 5259  df-fo 5261
This theorem is referenced by:  fofun  5478  fofn  5479  dffo2  5481  foima  5482  resdif  5523  ffoss  5533  fconstfvm  5777  cocan2  5832  foeqcnvco  5834  focdmex  6169  algrflem  6284  algrflemg  6285  tposf2  6323  mapsn  6746  ssdomg  6834  fopwdom  6894  fidcenumlemrks  7014  fidcenumlemr  7016  ctmlemr  7169  ctm  7170  ctssdclemn0  7171  ctssdccl  7172  ctssdc  7174  enumctlemm  7175  enumct  7176  fodjuomnilemdc  7205  exmidfodomrlemr  7264  exmidfodomrlemrALT  7265  suplocexprlemdisj  7782  suplocexprlemub  7785  wrdsymb  10944  ennnfonelemdc  12559  ennnfonelemg  12563  ennnfonelemp1  12566  ennnfonelemhdmp1  12569  ennnfonelemkh  12572  ennnfonelemhf1o  12573  ennnfonelemex  12574  ennnfonelemhom  12575  ctinfomlemom  12587  ctinf  12590  ctiunctlemudc  12597  ctiunctlemf  12598  omctfn  12603  imasival  12892  imasbas  12893  imasplusg  12894  imasmulr  12895  imasaddfnlemg  12900  imasaddvallemg  12901  imasaddflemg  12902  imasgrp2  13183  mhmid  13188  mhmmnd  13189  mhmfmhm  13190  ghmgrp  13191  ghmfghm  13399  imasring  13563  znunit  14158  znrrg  14159  dvrecap  14892  gausslemma2dlem1f1o  15217  subctctexmid  15561  pw1nct  15563
  Copyright terms: Public domain W3C validator