ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffo GIF version

Theorem nffo 5475
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nffo.1 𝑥𝐹
nffo.2 𝑥𝐴
nffo.3 𝑥𝐵
Assertion
Ref Expression
nffo 𝑥 𝐹:𝐴onto𝐵

Proof of Theorem nffo
StepHypRef Expression
1 df-fo 5260 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
2 nffo.1 . . . 4 𝑥𝐹
3 nffo.2 . . . 4 𝑥𝐴
42, 3nffn 5350 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 4907 . . . 4 𝑥ran 𝐹
6 nffo.3 . . . 4 𝑥𝐵
75, 6nfeq 2344 . . 3 𝑥ran 𝐹 = 𝐵
84, 7nfan 1576 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)
91, 8nfxfr 1485 1 𝑥 𝐹:𝐴onto𝐵
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wnf 1471  wnfc 2323  ran crn 4660   Fn wfn 5249  ontowfo 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-fo 5260
This theorem is referenced by:  nff1o  5498  ctiunctal  12598
  Copyright terms: Public domain W3C validator