![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nffo | GIF version |
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nffo.1 | ⊢ Ⅎ𝑥𝐹 |
nffo.2 | ⊢ Ⅎ𝑥𝐴 |
nffo.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nffo | ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 5260 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
2 | nffo.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nffo.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffn 5350 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
5 | 2 | nfrn 4907 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nffo.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfeq 2344 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 = 𝐵 |
8 | 4, 7 | nfan 1576 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 1, 8 | nfxfr 1485 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 Ⅎwnf 1471 Ⅎwnfc 2323 ran crn 4660 Fn wfn 5249 –onto→wfo 5252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-fo 5260 |
This theorem is referenced by: nff1o 5498 ctiunctal 12598 |
Copyright terms: Public domain | W3C validator |