| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffo | GIF version | ||
| Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| nffo.1 | ⊢ Ⅎ𝑥𝐹 |
| nffo.2 | ⊢ Ⅎ𝑥𝐴 |
| nffo.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nffo | ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5286 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 2 | nffo.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nffo.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nffn 5379 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| 5 | 2 | nfrn 4932 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
| 6 | nffo.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 5, 6 | nfeq 2357 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 = 𝐵 |
| 8 | 4, 7 | nfan 1589 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 1, 8 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 Ⅎwnf 1484 Ⅎwnfc 2336 ran crn 4684 Fn wfn 5275 –onto→wfo 5278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-fo 5286 |
| This theorem is referenced by: nff1o 5532 ctiunctal 12887 |
| Copyright terms: Public domain | W3C validator |