ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffo GIF version

Theorem nffo 5546
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nffo.1 𝑥𝐹
nffo.2 𝑥𝐴
nffo.3 𝑥𝐵
Assertion
Ref Expression
nffo 𝑥 𝐹:𝐴onto𝐵

Proof of Theorem nffo
StepHypRef Expression
1 df-fo 5323 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
2 nffo.1 . . . 4 𝑥𝐹
3 nffo.2 . . . 4 𝑥𝐴
42, 3nffn 5416 . . 3 𝑥 𝐹 Fn 𝐴
52nfrn 4968 . . . 4 𝑥ran 𝐹
6 nffo.3 . . . 4 𝑥𝐵
75, 6nfeq 2380 . . 3 𝑥ran 𝐹 = 𝐵
84, 7nfan 1611 . 2 𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)
91, 8nfxfr 1520 1 𝑥 𝐹:𝐴onto𝐵
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wnf 1506  wnfc 2359  ran crn 4719   Fn wfn 5312  ontowfo 5315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-fo 5323
This theorem is referenced by:  nff1o  5569  ctiunctal  13007
  Copyright terms: Public domain W3C validator