![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fores | GIF version |
Description: Restriction of a function. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
fores | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5259 | . . 3 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
2 | 1 | anim1i 340 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹)) |
3 | df-fn 5221 | . . 3 ⊢ ((𝐹 ↾ 𝐴) Fn 𝐴 ↔ (Fun (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) = 𝐴)) | |
4 | df-ima 4641 | . . . . 5 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
5 | 4 | eqcomi 2181 | . . . 4 ⊢ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴) |
6 | df-fo 5224 | . . . 4 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴))) | |
7 | 5, 6 | mpbiran2 941 | . . 3 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴) Fn 𝐴) |
8 | ssdmres 4931 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐴) = 𝐴) | |
9 | 8 | anbi2i 457 | . . 3 ⊢ ((Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹) ↔ (Fun (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) = 𝐴)) |
10 | 3, 7, 9 | 3bitr4i 212 | . 2 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹)) |
11 | 2, 10 | sylibr 134 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ⊆ wss 3131 dom cdm 4628 ran crn 4629 ↾ cres 4630 “ cima 4631 Fun wfun 5212 Fn wfn 5213 –onto→wfo 5216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-ima 4641 df-fun 5220 df-fn 5221 df-fo 5224 |
This theorem is referenced by: resdif 5485 ctinf 12433 qnnen 12434 |
Copyright terms: Public domain | W3C validator |