ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fores GIF version

Theorem fores 5429
Description: Restriction of a function. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
fores ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))

Proof of Theorem fores
StepHypRef Expression
1 funres 5239 . . 3 (Fun 𝐹 → Fun (𝐹𝐴))
21anim1i 338 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹))
3 df-fn 5201 . . 3 ((𝐹𝐴) Fn 𝐴 ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
4 df-ima 4624 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
54eqcomi 2174 . . . 4 ran (𝐹𝐴) = (𝐹𝐴)
6 df-fo 5204 . . . 4 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ ((𝐹𝐴) Fn 𝐴 ∧ ran (𝐹𝐴) = (𝐹𝐴)))
75, 6mpbiran2 936 . . 3 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴) Fn 𝐴)
8 ssdmres 4913 . . . 4 (𝐴 ⊆ dom 𝐹 ↔ dom (𝐹𝐴) = 𝐴)
98anbi2i 454 . . 3 ((Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹) ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
103, 7, 93bitr4i 211 . 2 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹))
112, 10sylibr 133 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wss 3121  dom cdm 4611  ran crn 4612  cres 4613  cima 4614  Fun wfun 5192   Fn wfn 5193  ontowfo 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-ima 4624  df-fun 5200  df-fn 5201  df-fo 5204
This theorem is referenced by:  resdif  5464  ctinf  12385  qnnen  12386
  Copyright terms: Public domain W3C validator