Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fores | GIF version |
Description: Restriction of a function. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
fores | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5229 | . . 3 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
2 | 1 | anim1i 338 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹)) |
3 | df-fn 5191 | . . 3 ⊢ ((𝐹 ↾ 𝐴) Fn 𝐴 ↔ (Fun (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) = 𝐴)) | |
4 | df-ima 4617 | . . . . 5 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
5 | 4 | eqcomi 2169 | . . . 4 ⊢ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴) |
6 | df-fo 5194 | . . . 4 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴))) | |
7 | 5, 6 | mpbiran2 931 | . . 3 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴) Fn 𝐴) |
8 | ssdmres 4906 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐴) = 𝐴) | |
9 | 8 | anbi2i 453 | . . 3 ⊢ ((Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹) ↔ (Fun (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) = 𝐴)) |
10 | 3, 7, 9 | 3bitr4i 211 | . 2 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹)) |
11 | 2, 10 | sylibr 133 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ⊆ wss 3116 dom cdm 4604 ran crn 4605 ↾ cres 4606 “ cima 4607 Fun wfun 5182 Fn wfn 5183 –onto→wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-fo 5194 |
This theorem is referenced by: resdif 5454 ctinf 12363 qnnen 12364 |
Copyright terms: Public domain | W3C validator |