ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq2 GIF version

Theorem foeq2 5435
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq2 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))

Proof of Theorem foeq2
StepHypRef Expression
1 fneq2 5305 . . 3 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
21anbi1d 465 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶)))
3 df-fo 5222 . 2 (𝐹:𝐴onto𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶))
4 df-fo 5222 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶))
52, 3, 43bitr4g 223 1 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  ran crn 4627   Fn wfn 5211  ontowfo 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-fn 5219  df-fo 5222
This theorem is referenced by:  f1oeq2  5450  foeq123d  5454  tposfo  6271  ctssdclemr  7110  enumct  7113  exmidfodomrlemr  7200  exmidfodomrlemrALT  7201  ctinf  12430  ctiunct  12440  ssomct  12445  subctctexmid  14720
  Copyright terms: Public domain W3C validator