ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq2 GIF version

Theorem foeq2 5427
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq2 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))

Proof of Theorem foeq2
StepHypRef Expression
1 fneq2 5297 . . 3 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
21anbi1d 465 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶)))
3 df-fo 5214 . 2 (𝐹:𝐴onto𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶))
4 df-fo 5214 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶))
52, 3, 43bitr4g 223 1 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  ran crn 4621   Fn wfn 5203  ontowfo 5206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-4 1508  ax-17 1524  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-cleq 2168  df-fn 5211  df-fo 5214
This theorem is referenced by:  f1oeq2  5442  foeq123d  5446  tposfo  6262  ctssdclemr  7101  enumct  7104  exmidfodomrlemr  7191  exmidfodomrlemrALT  7192  ctinf  12396  ctiunct  12406  ssomct  12411  subctctexmid  14291
  Copyright terms: Public domain W3C validator