ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiinya GIF version

Theorem nfiinya 3994
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunya.1 𝑦𝐴
nfiunya.2 𝑦𝐵
Assertion
Ref Expression
nfiinya 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiinya
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 3968 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiunya.1 . . . 4 𝑦𝐴
3 nfiunya.2 . . . . 5 𝑦𝐵
43nfcri 2366 . . . 4 𝑦 𝑧𝐵
52, 4nfralya 2570 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2377 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2369 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2200  {cab 2215  wnfc 2359  wral 2508   ciin 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-iin 3968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator