ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiinya GIF version

Theorem nfiinya 3956
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunya.1 𝑦𝐴
nfiunya.2 𝑦𝐵
Assertion
Ref Expression
nfiinya 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiinya
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 3930 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiunya.1 . . . 4 𝑦𝐴
3 nfiunya.2 . . . . 5 𝑦𝐵
43nfcri 2342 . . . 4 𝑦 𝑧𝐵
52, 4nfralya 2546 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2353 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2345 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2176  {cab 2191  wnfc 2335  wral 2484   ciin 3928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-iin 3930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator