Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfii1 | GIF version |
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
nfii1 | ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 3885 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
2 | nfra1 2506 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfab 2322 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
4 | 1, 3 | nfcxfr 2314 | 1 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 {cab 2161 Ⅎwnfc 2304 ∀wral 2453 ∩ ciin 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-iin 3885 |
This theorem is referenced by: dmiin 4866 |
Copyright terms: Public domain | W3C validator |