| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfii1 | GIF version | ||
| Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| nfii1 | ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 3930 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
| 2 | nfra1 2537 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 2 | nfab 2353 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 4 | 1, 3 | nfcxfr 2345 | 1 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 {cab 2191 Ⅎwnfc 2335 ∀wral 2484 ∩ ciin 3928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-iin 3930 |
| This theorem is referenced by: dmiin 4924 |
| Copyright terms: Public domain | W3C validator |